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398 PROBLEM SOLUTIONS

B.1 INTRODUCTION

Prob. 1.1.1Figure B.1 displays the measured coastline lengthd as a function of the
measurement scales used. FITDATA

MEASUREMENT SCALE (km)COASTLINE
LENGTH(km
)

102101100

600400
200
100

Fig. B.1 Coastline lengthd vs. measurement scales (+ symbols). The data are well
described by a straight line on this doubly logarithmic plot, revealing thatd ∝ sc. A least-
squares fit based on the logarithms, shown as the dashed line, exhibits a slopec ≈ −0.30.

Prob. 1.1.2 Taking the logarithm of both sides of Eq. (1.1) yieldsln(d) = c ln(s) +
ln(b), for some constantb. This suggests fitting a straight line to a plot ofln(d) vs.
ln(s) to obtain the slope,c. This also explains the use of logarithmic coordinates for
both axes of Fig. B.1. Such a least-squares fit yieldsc ≈ −0.30.

Prob. 1.1.3 Consulting an atlas reveals that the South African coastline is excep-
tionally smooth, the coastline of Britain is much rougher, and that of Australia lies
somewhere between the two. Iceland’s coastline appears the roughest of all. Evi-
dently, the power-law exponentc provides an index of roughness, with larger negative
magnitudes signifying more irregular coastlines.

Prob. 1.2.1 Placen points evenly spaced about the perimeter of a circle of unit
circumference, and connect adjacent points to form a regular polygon ofn sides,
each of lengths , as shown in Fig. B.2. Now draw line segments from each point on
the perimeter to the center of the circle; all have a length equal to the radiusr = 1/2π.
Considering one of the isosceles triangles thus generated, letθ1 denote the value of
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Fig. B.2 A regular polygon inscribed within a circle provides a means for approximating
the circle’s perimeter with a given resolution. Standard trigonometry yields a relation between
the number of edges of the polygon and their size, and therefore yields the perimeter of the
polygon.

the angle formed at the center of the circle. Since alln of these angles together
subtend an angle of2π, we haveθ1 = 2π/n. For isosceles triangles, the other two
anglesθ2 must each equalπ/2−π/n, since all three angles must sum toπ. The sine
theorem for triangles states that the ratio of two sides equals the ratio of the sines of
the opposite angles, yielding

s

r
=

sin(θ1)
sin(θ2)

s

(2π)−1 =
sin(2π/n)

sin(π/2− π/n)

s =
sin(2π/n)

2π sin(π/2− π/n)

=
2 sin(π/n) cos(π/n)

2π cos(π/n)
ns = (n/π) sin(π/n). (B.1)

Graphs of this function indeed increase asn increases.

Prob. 1.2.2 A circle is not a fractal, however, since the perimeter does not increase
significantly as the resolution increases. In the limit of a large number of sidesn,
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Eq. (B.1) becomes

lim
n→∞

ns = lim
n→∞

(n/π) sin(π/n)

= lim
x→0

sin(x)/x

= 1. (B.2)

As the number of sidesn increases,s decreases in concert. Concurrently, the perime-
ter approaches unity, the value of the circle itself, as it must. Therefore, the estimated
perimeter varies between2/π for two segments (each of length1/π) and unity for in-
finitesimal segments: an increase of only 57%. For a fractal, in contrast, the perimeter
changes dramatically over a broad range of measurement resolutions.
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B.2 SCALING, FRACTALS, AND CHAOS

Prob. 2.1

1. Yes: circulatory systems comprise branches and sub-branches, with parts re-
sembling the whole over a range of branchings.

2. Yes: again, each branching yields smaller random copies of the original.

3. No: with all hair strands essentially the same diameter and length, these two
scales dominate and no scaling behavior emerges.

4. No: except for possible surface roughness or percolating pores, a brick essen-
tially forms a simple rectangular prism.

5. No: steady winds of constant velocity sort sand grains by size and impart regular
ripples to the sand; with only these two scales present, fractal characteristics
do not occur.

6. Yes: clouds generally have borders with fractal characteristics and resemble
coastlines in many respects.

7. Yes: mountain ranges have mountains and foothills, each with smaller features
of similar shape, and so forth; horizontal slices (contours) of mountain ranges
themselves take fractal form — similar slices at sea level determine coastlines,
which take fractal forms as we have seen.

8. No: with or without air resistance included, the path of the ball forms a simple
curve without fractal features; air turbulence results in slight variations in the
path, but only negligible ones.

9. No: the added noise effectively destroys the self-similar structure of the set of
line segments; examining the final resulta posteriori, one cannot know of the
exact self-similarity employed in the construction of the setC3 a priori, before
adding the noise.

Prob. 2.2.1Proceeding directly from Eq. (2.31) yields

y ≡ π−1 arccos(1− 2x)
cos(πy) = 1− 2x

x = 1
2 [1− cos(πy)]. (B.3)

Substituting Eq. (B.3) into Eq. (2.20) withc = 4 leads to

xn+1 = 4xn(1− xn)
1
2

[
1− cos(πyn+1)

]
= 4× 1

2

[
1− cos(πyn)

]×
(
1− 1

2

[
1− cos(πyn)

])
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1
2

[
1− cos(πyn+1)

]
= 1− cos2(πyn)

cos(πyn+1) = 2 cos2(πyn)− 1
= cos2(πyn)− sin2(πyn)
= cos(2πyn), (B.4)

which yields results identical to Eq. (2.32).

Prob. 2.2.2Equation (2.32) states that the values ofy effectively experience a doubling
at each iteration. This ignores the sign of the transformation in Eq. (2.32), which
becomes irrelevant for estimates of absolute values in any case. This simply yields
|εn+1/εn| = 2, which is exactly the same as for the original expression inx, Eq. (2.20).
The two must assume the same values, since a monotonic transformation cannot
change the ratio of perturbations (Ott, 2002).

Prob. 2.3.1Essentially the same argument applies toC′ as toC. Since we remove the
middle half from each interval, the total width or Lebesgue measure ofC′n assumes
the value2−n, which also approaches zero asn increases. In the limitn → ∞, we
have a width of zero forC′ just as forC.

Prob. 2.3.2Again, similar arguments apply. This time aquaternaryexpansion proves
useful, with points having only 0 and 3 in their expansions (except for endpoints)
belonging toC′, and others not. The same one-to-one mapping to the original unit
interval exists, showing that the number of points in the unit interval, inC′, and inC
for that matter, all coincide.

Prob. 2.3.3Since each stage in the construction ofC′ yields twice as many intervals,
each one quarter the size of the original, we find that decreasingε by a factor of
4 yields a corresponding increase inN(ε) of a factor of 2. Employing the scaling
equationN(ε) ∼ ε−D0 , we obtainD0 = log(2)/ log(4) = 1

2 , exactly.

Prob. 2.4.1Solving forx we obtain

x ≡ 0.002002 . . .3

27x = 2.002002 . . .3

26x = 2 (B.5)

x = 2/26
= 1/13, (B.6)

where Eq. (B.5) results from the difference between the two lines above it.

Prob. 2.4.2All endpoints ofC have terminating ternary expansions. Since the ternary
expansion forx does not terminate, but rather persists indefinitely,x does not belong
to the endpoints ofC.
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Prob. 2.4.3 Since the ternary expansion ofx has no 1’s in it,x must belong toC.
Since we have established thatx does not belong to the endpoints ofC, x must belong
to the interior ofC.

Prob. 2.4.4 An uncountably infinite number of irrational values belong toC, since
C comprises an uncountably infinite number of values and only a countable number
of them belong to the rational numbers. The valuex = 0.022020200020 . . .3, where
ak = 2 if k is prime and zero if not, forms one such example.

Prob. 2.5 Settingx = 1 in Eq. (2.4) yields

f(a) = g(a) f(1) (B.7)

Substituting Eq. (B.7) back into Eq. (2.4), we obtain

g(ax) f(1) = g(a) g(x) f(1)
g(ax) = g(a) g(x). (B.8)

Defining

g2(x) ≡ ln
{
g
[
exp(x)

]}

a′ ≡ ln(a) (B.9)

x′ ≡ ln(x)

and substituting Eq. (B.9) into Eq. (B.8) yields

exp
{
g2

[
ln(ax)

]}
= exp

{
g2

[
ln(a)

]}
exp

{
g2

[
ln(x)

]}

g2

[
ln(ax)

]
= g2

[
ln(a)

]
+ g2

[
ln(x)

]

g2(a′ + x′) = g2(a′) + g2(x′). (B.10)

Equation (B.10) demonstrates thatg2(·) belongs to the class of linear functions, so
that

g2(x′) = ln(c)x′

g(x) = xc

f(x) = b xc, (B.11)

in accord with Eqs. (2.5) and (2.6).
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B.3 POINT PROCESSES: DEFINITION AND MEASURES

Prob. 3.1 An orderly, one-dimensional point process provides a useful model for
examples 2, 3, 7, 8, and 9, despite the extremes of example 8, which has an average rate
of well over 1 billion events/sec, and example 9, in which there is only one interval.
The orderly, one-dimensional point-process model fails for the other examples for
a variety of reasons. Atwo-dimensional point process describes example 1, and
considering either the latitude or longitude (but not both) would yield an example
amenable to the model of an orderly, one-dimensional point-process. For example
4, the failure lies in the lack of precise time localization, since thunderstorms arise
and dissipate gradually. For the model to apply, one could instead consider the times
of lightning strikes. A similar argument applies to example 5; considering the times
at which cars pass a specified point, such as the toll booth, would render the model
applicable. Example 6 contains an infinite number of events in a finite interval, and
therefore has an infinite rate; in particular, any rate estimate diverges near the origin.
No orderly point process can model this set. Restricting the integersn to lie below
a certain maximum value would obviate this limitation. Finally, example 10 has no
events at all, either well- or ill-defined. For the model to apply, one could consider
the times at which the sign of the difference changes.

Prob. 3.2 In the limit asT → 0, Eq. (3.33) indicates that the probability of two
or more events occurring within a counting time becomes very small. This makes
sense, since smaller durations tend to contain fewer events. Given the approximation
Pr{Z(T ) > 1} ≈ 0, the count random variableZ(T ) almost always takes one of
two values: zero or unity. In both cases,Z2(T ) = Z(T ). Including the rare cases
whenZ(T ) > 1 givesZ2(T ) ≈ Z(T ). Taking expectations of both sides then yields
E

[
Z2(T )

] ≈ E[Z(T )], as we set out to prove.

Prob. 3.3 Combine Eqs. (3.11) and (3.29), and proceed to take two derivatives:

Pr{Z(t) = 0} = 1− Pϑ(t)

= 1− 1
E[τ ]

∫ t

0

[1− Pτ (x)] dx

d

dt
Pr{Z(t) = 0} = − 1

E[τ ]
[1− Pτ (t)]

d 2

dt2
Pr{Z(t) = 0} = − 1

E[τ ]
[−pτ (t)]

E[τ ]
d 2

dt2
Pr{Z(t) = 0} = pτ (t). (B.12)

Prob. 3.4 For Z(t) = 0, we require that no events occur in an interval of duration
t. Alternately, we can say that the time to the next event, starting at the beginning
of the interval of durationt, exceedst. In terms of the forward recurrence timeϑ,
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we haveϑ > t. Taking probabilities, we have thatPr{Z(t) = 0} = Pr{ϑ > t}.
But by the definition of the probability distribution function,Pϑ(t) ≡ Pr{ϑ ≤ t} =
1− Pr{ϑ > t}. Combining these two expressions yields Eq. (3.29).

Prob. 3.5 For arbitrary intervals, there is no restriction on the skewness, which can
take any value from negative to positive infinity, inclusive. The kurtosis can also
attain arbitrarily large positive values, but a lower limit exists. Since the kurtosis
does not depend on the absolute scale of a distribution, we can choose zero mean and
unit variance without loss of generality. We define a reduced variablex with these
statistics,

x ≡ τ − E[τ ]
στ

, (B.13)

sothat the kurtosis ofτ simplifies to

E[(τ − E[τ ])4]/σ4
τ − 3 → E[x4]− 3. (B.14)

Now definey ≡ x2, and consider

E[x4] = E[y2]
= E2[y] + Var[y]
≤ E2[y]
= E2[x2]
= 1. (B.15)

Combining Eqs. (B.14) and (B.15) therefore provides

E[(τ − E[τ ])4]/σ4
τ − 3 ≤ 1− 3 = −2. (B.16)

To achieve this lower limit, we require a random variable with zero mean, unit
variance, and (constant) unit square. We then havex = +1,−1, with equal proba-
bility, as the only solution. In terms of the original variableτ , we may choose any
two values as long as they each occur with probability1/2. In this case, the general
probability density function takes the form

pτ (t) =
δ(t− a) + δ(t− b)

2
(B.17)

for arbitrary (but distinct) valuesa andb.
Restrictingτ to assume nonnegative values actually changes these ranges very

little. The kurtosis retains its negative limit of−2 as well as its upper limit of positive
infinity. Positive values of skewness derive from tails in positive values ofτ , which
does not change. To achieve negative skewness values, we can truncate a distribution
of τ at some large negative number, and then increase the mean by that same number,
resulting in a distribution with nearly the same negative skewness but limited to
positive interevent intervals. In this manner one can generate any desired negative
skewness except for negative infinity.
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Prob. 3.6 Proceeding directly from the definition in Eq. (3.13), and using a change
of variablex = t0/t, we have

E[τ c] =
∫ ∞

0

tc
√

t0/π t−3/2 exp(−t0/t) dt

=
∫ ∞

0

tc0 x−c
√

t0/π t
−3/2
0 x3/2 e−x t0 x−2 dx

=
tc0√
π

∫ ∞

0

x−1/2−c e−x dx (B.18)

= π−1/2 Γ( 1
2 − c) tc0, (B.19)

for c sufficiently small, whereΓ(·) again denotes the Eulerian gamma function [see
Eq. (4.44)]. Moments ofτ do not exist for positive integersc since the integral in
Eq. (B.18) diverges near the origin for those exponents. For exponents less than or
equal to−1, the integral in Eq. (B.18) has infinite area near the origin and therefore
diverges. For convergence, we thus require− 1

2 − c > −1, or c < 1
2 . Hence, all

moments of orderc less than one half exist, including fractional moments between
zero and one half as well as negative-integer moments.

Prob. 3.7 Employing the properties of regular Brownian motion, as discussed in
Sec. 2.4.2, proves especially helpful. The rescaled range statistic and detrended
fluctuation analysis both employ a summed version of the input series. For large
k, and intervals with finite variance, the resulting sums will converge to a Gaussian
distribution as a result of the central limit theorem. Thus, the sums approach regular
Brownian motion. We know from Sec. 2.4.2 that scaling the time by a factorc is
equivalent to scaling the amplitude by a factor

√
c. In terms of a sum of intervals,

the case of interest here, the independent variable changes from time to the number
of intervals. Both the rescaled range statistic and detrended fluctuation analysis yield
results that derive from the amplitude of the process: a normalized difference for
the former statistic, and an average root-mean-square deviation for the latter. So
increasing the independent variable by a factorc will similarly increase the resulting
statistics by a factor

√
c. Settingc = k, we conclude that both statistics scale as

√
k.

Prob. 3.8 The forward recurrence time is defined as the time remaining to the next
event, starting at a timet0 independent of the process. This timet0 lies within
some interevent intervalτ , with the probability density of that interval proportional
to spτ (s); the formpτ (s) itself denotes the probability density of the times between
events. The additional factor ofs arises because this form of sampling (time-based
rather than interval-based) preferentially selects longer intervals, in proportion to
their duration. (To see this, consider a simple example where interevent intervals of
durations1 and2 exist in equal numbers. A time selected at random will lie within an
interval of duration2 twice as often as one of duration1.) Normalizing this interevent
interval yields a probability density ofspτ (s)/E[τ ].

Since we selected the timet0 independently of the point process, given the interval
τ , we have no other information about where within this intervalt0 occurs. Thus,
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the time remaining betweent0 and the next event of the point process (the forward
recurrence time) has a uniform distribution1/s, given thats = τ . To evaluate
the forward recurrence-time probability density att, we integrate over all times that
remain possible (greater thant). Taken together, we have

pϑ(t) =
∫ ∞

t

(1/s)
{
spτ (s)/E[τ ]

}
ds

=
1

E[τ ]

∫ ∞

t

pτ (s) ds

=
1

E[τ ]
[1− Pτ (t)]

Pϑ(t) =
1

E[τ ]

∫ t

0

[1− Pτ (s)] ds, (B.20)

whichis precisely Eq. (3.11). See Cox & Isham (1980, pp. 7–8) for a related approach.

Prob. 3.9 Imagine an almost periodic series of events. We represent the interevent
intervalsτk as a perturbation about the mean value

τk = E[τ ] (1 + εk), (B.21)

where the sequence of dimensionless random variables{εk} represents the relative
deviations of each interevent interval from the mean. Since we assume that the
sequence{εk} remains small, we can adequately describe the point process in terms
of a local rate,λk:

λk(E[τ ]) = 1/τk

=
{
E[τ ] (1 + εk)

}−1

= E[µ]/(1 + εk)

≈ E[µ]− E[µ] εk. (B.22)

Ignoring the constant termE[µ] (which only affects the spectrum at zero frequency),
and recalling that multiplying a sequence by a constant changes its spectrum by the
square of that constant, we arrive at

Sλ (f/E[µ]) ≈ E2[µ] Sε(f). (B.23)

For the interval-based spectrum, Eq. (B.21) leads to a similar result:

Sτ (f) = E2[τ ]Sε(f). (B.24)

Combining Eqs. (3.67), (B.23), and (B.24) leads to

Sτ (f) ≈ π−2 E2[τ ] f−2 (πf E[τ ])2 SN (f/ E[µ]) , (B.25)
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where we have made use of the relationsin(πf E[τ ]) ≈ πf E[τ ] for low frequencies
f (see Prob. 3.13). Finally, Eq. (B.25) simplifies to

Sτ (f) ≈ E4[τ ] SN (f/ E[µ]) . (B.26)

Prob. 3.10 Beginning with the definition ofF (T ) provided in Eq. (3.32), we have

F (T ) ≡ E
[
Z2(T )

]− E2[Z(T )]
E[Z(T )]

E[Z(T )] F (T ) = E
[
Z2(T )

]− E2[Z(T )]

E[µ] T F (T ) = E

[∫ T

s=0

∫ T

t=0

dN(s) dN(t)

]
− E2[µ]T 2

=
∫ T

s=0

∫ T

t=0

G(t− s) ds dt− E2[µ] T 2. (B.27)

Defining
u ≡ t− s and v ≡ t + s, (B.28)

we obtain
ds dt = du dv/ 2. (B.29)

Substituting Eqs. (B.28) and (B.29) into Eq. (B.27) we obtain

E[µ] T F (T ) =
∫ T

u=−T

∫ T−|u|

v=|u|−T

G(u) du dv/ 2− E2[µ]T 2

=
∫ T

u=−T

(T − |u|) G(u) du− E2[µ]T 2

=
∫ T

u=−T

(T − |u|) {
G(u)− E2[µ]

}
du. (B.30)

Prob. 3.11 We begin with the inverse Fourier transform relationship betweenG(t)
andSN (f) provided in Eq. (3.58), and keep in mind that the constant termE2[µ] in
the coincidence rate corresponds to a delta functionE2[µ] δ(f) at zero frequency in
the spectrum

G(u) =
∫ ∞

f=−∞
SN (f) exp(i2πfu) df

=
∫ ∞

f=−∞
SN (f) cos(2πfu) df

G(u)− E2[µ] =
∫ ∞

f=−∞

{
SN (f)− E2[µ] δ(f)

}
cos(2πfu) df

= 2
∫ ∞

f=0+

SN (f) cos(2πfu) df. (B.31)
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Reiterating Eq. (B.30) and making use of Eq. (B.31) yields

E[µ] T F (T ) =
∫ T

u=−T

(T − |u|) {
G(u)− E2[µ]

}
du

= 2
∫ T

u=−T

(T − |u|)
∫ ∞

f=0+

SN (f) cos(2πfu) df du

= 2
∫ ∞

f=0+

SN (f)
∫ T

u=−T

(T − |u|) cos(2πfu) du df

=
∫ ∞

f=0+

4 T 2 SN (f)
∫ 1

x=0

(1− x) cos(2πfTx) dx df

=
∫ ∞

f=0+

4 T 2 SN (f)
[
(2πfT )−1 (1− x) sin(2πfTx)

− (2πfT )−2 cos(2πfTx)
]1

x=0
df

=
∫ ∞

f=0+

4T 2

(2πfT )2
SN (f)

[
1− cos(2πfT )

]
df

=
∫ ∞

f=0+

1
π2f2 SN (f) 2 sin2(πfT ) df

=
2
π2

∫ ∞

0+

SN (f) sin2(πfT ) f−2 df. (B.32)

Prob. 3.12Here we employ Eq. (3.41), and make use of Eq. (3.61), which we proved
immediately above [see Eq. (B.32)]:

A(T ) = 2F (T )− F (2T )

=
4

π2 E[µ] T

∫ ∞

0+

SN (f) sin2(πfT ) f−2 df

− 2
π2 E[µ] 2T

∫ ∞

0+

SN (f) sin2(2πfT ) f−2 df

=
1

π2 E[µ] T

∫ ∞

0+

SN (f)
[
4 sin2(πfT )− sin2(2πfT )

]
f−2 df

=
1

π2 E[µ] T

∫ ∞

0+

SN (f)
[
4 sin2(πfT )

− 4 sin2(πfT ) cos2(πfT )
]
f−2 df

=
4

π2 E[µ] T

∫ ∞

0+

SN (f) sin2(πfT )
[
1− cos2(πfT )

]
f−2 df

=
4

π2 E[µ] T

∫ ∞

0+

SN (f) sin4(πfT ) f−2 df. (B.33)
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Prob. 3.13 Conversion of the point processdN(t) into a rateλk(T ) involves two
operations taken in sequence: averaging and sampling. We consider each in turn, and
examine how they affect the spectrum.

The first step involves averagingdN(t) over a timeT . We can cast this operation
as filtering by a simple rectangular form of durationT and height1/T , which has an
impulse response function

h(t) =
{

1/T 0 ≤ t < T
0 otherwise.

(B.34)

Linear systems theory (Papoulis, 1991) tells us that filtering a point process changes
the power spectral density by a factor equal to the square magnitude of the Fourier
transform of the impulse response function [see Eq. (9.35)]. In this case we have

F{h(t)} ≡
∫ ∞

t=−∞
h(t) exp(−i2πft) df

=
∫ T

0

(1/T ) exp(−i2πft) df

= [1− exp(−i2πfT )] /(i2πfT )

= exp(−iπfT ) [exp(iπfT )− exp(−iπfT )] /(i2πfT )

= exp(−iπfT ) sin(πfT )/(πfT )
∣∣F{h(t)}∣∣2 = sin2(πfT )/(πfT )2. (B.35)

(The same result can be obtained, but with additional effort, by using the methods
employed in Probs. 3.10 and 3.11.)

If we let X(t) denote the averaged process thus defined, its spectrum becomes

SX(f) = SN (f) sin2(πfT )/(πfT )2. (B.36)

ButX(t) exists for all timest, while we have definedλk(T ) as a discrete-time process,
defined only for integer values ofk. ConvertingX(t) into λk(T ) involves sampling
at a time interval ofT . Discrete-time processes have periodic spectra, spaced a
frequency1/T apart; this leads to aliasing when the component spectra overlap. In
terms of the spectrum of the averaged process, we have

Sλ(f, T ) =
∞∑

k=−∞
SX(f + k/T ). (B.37)

Combining Eqs. (B.36) and (B.37) yields Eq. (3.67), where we have made use of the
simplification

sin(θ + nπ) = (−1)n sin(θ). (B.38)

To evaluate Eq. (3.67) for small values offT , we employ the relationsin(θ) ≈ θ
for small θ, verified by l’Hôpital’s rule. Reiterating Eq. (3.67) and employing this
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approximation yields

Sλ(f, T ) =
∞∑

k=−∞
SN (f + k/T )

sin2(πfT )
(πfT + πk)2

≈
∞∑

k=−∞
SN (f + k/T )

(πfT )2

(πfT + πk)2

=
∞∑

k=−∞

SN (f + k/T )
[1 + k/(fT )]2

. (B.39)

For small values of the productfT , the denominator in Eq. (B.39) assumes quite
large values fork 6= 0, making these terms quite small. The term corresponding to
k = 0 then dominates, and we haveSλ(f, T ) ≈ SN (f).
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B.4 POINT PROCESSES: EXAMPLES

Prob. 4.1.1A counting window of durationT = nτ contains exactlyn events regard-
less of the starting time of the window. The randomness inherent in the point process
makes interpolation between integer multiples ofτ possible, so that for arbitraryT
we have

Z(T ) =

{
int(T/τ) with probability 1− p

int(T/τ) + 1 with probability p,
(B.40)

whereint(x) denotes the largest integer not exceedingx and

p ≡ T/τ − int(T/τ) (B.41)

represents the probability of the larger count. For the mean number of counts, we
have the simple result

E[Z(T )] = T/τ (B.42)

common to all point processes (withE[τ ] = τ in this case). We employ Eqs. (B.40)–
(B.42) to find the variance

Var[Z(T )] = (1− p)
[
int(T/τ)− T/τ

]2 + p
[
int(T/τ) + 1− T/τ

]2

= (1− p)p 2 + p (1− p)2

= p (1− p), (B.43)

wherep is defined in Eq. (B.41). The functionp (1− p) indeed achieves a maximum
value of 1

4 for p = 1
2 .

Prob. 4.1.2Dividing Eq. (B.43) by Eq. (B.42) yields the normalized varianceF (T ):

F (T ) = Var[Z(T )]/ E[Z(T )]

= p (1− p) τ/ T

=
[
T/ τ − int(T/ τ)

] [
int(T/ τ) + 1− T/ τ

][
τ/ T

]
. (B.44)

Prob. 4.2.1 To find the forward recurrence-time probability density, we make use
of Eq. (3.12). Substituting Eq. (4.3) forpτ (t) yields the result for the homogeneous
Poisson process:

pϑ(t) = [1− Pτ (t)] / E[τ ]

=
[
1−

∫ t

0

µ exp(−µs) ds

]
µ

= µ
{

1− [
1− exp(−µt)

]}

= µ exp(−µt)

= pτ (t), (B.45)
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so that the forward recurrence-time probability density is identical to the interevent-
interval density for this process.

Prob. 4.2.2 Sincev can lie anywhere within an interevent interval, the time to the
events at either end must have the same statistics. Hence, the backward recurrence-
time probability density is the same as the forward recurrence-time probability density,
which was derived in Eq. (B.45) above.

Prob. 4.2.3The forward recurrence time and the backward recurrence time together
comprise the interevent interval surroundingv; their sum becomes that interval. As a
result of the memoryless nature of the homogeneous Poisson process, these two times
are independent. The convolution of the probability densities of two independent
random variables provides the probability density of their sum. Recalling thatτ∗
denotes the interval within whichv lies, we obtain

pτ∗(t) = pτ (t) ? pτ (t)

=
∫ t

0

pτ (s) pτ (t− s) ds

=
∫ t

0

µ exp(−µs) µ exp[−µ(t− s)] ds

= µ2

∫ t

0

exp(−µt) ds

= µ2t exp(−µt). (B.46)

Prob. 4.2.4 The two probability densities, Eqs. (B.46) and (4.3), do indeed differ.
For example, the mean interevent interval associated with Eq. (B.46) calculates to

E[τ∗] =
∫ ∞

0

t pτ∗(t) dt

=
∫ ∞

0

t µ2 t exp(−µt) dt

= E[τ ]
∫ ∞

0

x2 exp(−x) dx

= 2E[τ ], (B.47)

twice the value for the homogeneous Poisson process. The difference lies in how the
intervals are selected. For the conventional interevent-interval probability density,
pτ (t), each interval is weighted equally. But to obtain the statistics of the interval
spanning the timev, larger intervals are selected preferentially. In fact, the larger the
interval, the more likely we select it, leading to the extra factor oft in Eq. (B.46);
normalization to unity area yields the exact form of Eq. (B.46). Additional information
pertinent to this issue can be found in the solution to Prob. 3.8.
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Prob. 4.3 We begin withq = 0. For a particular value ofT , the sum will haveL/T
terms. EachZk(T ) assumes a value of zero with probabilityexp(−µT ), as provided
by Eq. (4.7); this corresponds to an empty box. A full box then occurs with probability
1− exp(−µT ). Multiplying this latter probability by the number of terms yields

E

[∑

k

Z0
k(T )

]
= (L/T ) [1− exp(−µT )]. (B.48)

In the limit of smallT , using Eq. (B.48) together with l’Ĥopital’s rule gives rise to

lim
T→0

E

[∑

k

Z0
k(T )

]
= lim

T→0

1− exp(−µT )
T/L

= lim
T→0

µ exp(−µT )
1/L

= µL

= E[N(L)], (B.49)

a constant value. In connection with Eq. (3.70) we obtainD0 = 0, as we must for a
finite collection of points. For largeT the exponential function in Eq. (B.48) vanishes
so that we haveL/T . Using this latter form in conjunction with Eq. (3.72) yields
D0 = 1 for this scaling region, as expected for a nonfractal process.

For q = 2 we obtain

E

[∑

k

Z2
k(T )

]
= (L/T ) E[Z2

k(T )]

= (L/T )
{
E2[Zk(T )] + Var[Zk(T )]

}

= (L/T )
{
(µT )2 + µT

}

= µL (1 + µT )

= E[N(L)] (1 + µT ), (B.50)

where we have used the particular cases listed immediately after Eq. (4.4). Here the
limiting forms emerge more readily; for smallT we again obtainE[N(L)], and for
largeT the unity term in Eq. (B.50) disappears. Equations (3.70) and (3.72) yield
D2 = 0 andD2 = 1, respectively, in agreement with the values obtained forD0

above.

Prob. 4.4.1 We begin with Eq. (3.6), the characteristic function of the interevent
intervals:

φτ (ω) ≡
∫ ∞

0

pτ (t) exp(−iωt) dt
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= µ(µ + iω)−1

∫ ∞

0

exp(−x) dx

=
µ

µ + iω
. (B.51)

For the spectrum, we substitute Eq. (B.51) into Eq. (4.16), to obtain

SN (f) = E2[µ] δ(f) + E[µ] Re
{

1 + φτ (2πf)
1− φτ (2πf)

}

= µ2 δ(f) + µ Re
{

1 + µ(µ + 2πif)−1

1− µ(µ + 2πif)−1

}

= µ2 δ(f) + µ Re
{

(µ + 2πif) + µ

(µ + 2πif)− µ

}

= µ2 δ(f) + µ Re
{

2µ + 2πif

2πif

}

= µ2 δ(f) + µ Re
{
−iµ/(πf) + 1

}

= µ2 δ(f) + µ, (B.52)

in agreement with Eq. (4.9c). In accordance with Eq. (3.59), the mean rate of the
processE[µ] = limf→∞ SN (f) = µ, using the results in Eq. (B.52).

Prob. 4.4.2Since constants and delta functions interchange under Fourier transforms,
Eqs. (4.9c) and (4.9d) form a Fourier-transform pair. Therefore, since Eq. (4.9c) is
valid for this process, so must Eq. (4.9d) be valid. Now consider the expectation of
two nonoverlapping intervals. For anyt1, t2, t3, t4 satisfyingt1 < t2 ≤ t3 < t4, we
have

E
{
[N(t4)−N(t3)] [N(t2)−N(t1)]

}

= E
[∫ t4

s=t3

dN(s)
∫ t2

t=t1

dN(t)
]

=
∫ t4

s=t3

∫ t2

t=t1

E[dN(s) dN(t)]

=
∫ t4

s=t3

∫ t2

t=t1

G(s− t) ds dt

=
∫ t4

s=t3

∫ t2

t=t1

µ2 ds dt (B.53)

=
[∫ t4

s=t3

µds

] [∫ t2

t=t1

µdt

]

= E
{
[N(t4)−N(t3)]

}
E

{
[N(t2)−N(t1)]

}
, (B.54)

where Eq. (B.53) follows from the lack of overlap in the two intervals, which pre-
vents the delta function from appearing. Equation (B.54) thus establishes that the
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expectation of the product equals the product of the expectations, and therefore that
the counts in these disjoint intervals are uncorrelated.

Prob. 4.4.3 Equation (4.2) asserts independence, which implies lack of correlation,
but not vice versa. However, a similar argument to that used in the solution of
Prob. 4.4.2 yields results for expectations of arbitrary orders:

E
{
[N(t4)−N(t3)]m [N(t2)−N(t1)]n

}
. (B.55)

Taken together, these results establish independence.

Prob. 4.5 Examining Eq. (4.16), we see that low frequencies correspond to small
arguments of the characteristic functionφτ (ω), enabling us to employ a power-series
expansion. We next examine the derivatives

dn

dωn φτ (ω) =
∫ ∞

0

pτ (t) (−it)n e−iωt dt

dn

dωn φτ (ω)ω=0 =
∫ ∞

0

pτ (t) (−it)n dt

= (−i)n E[τn], (B.56)

which leads to a general property of characteristic functions with finite moments.
Turning now to the power-series expansion, we arrive at

φτ (ω) =
∞∑

n=0

(−iω)n E[τn]/n!

≈
2∑

n=0

(−iω)n E[τn]/n!

= 1− iω E[τ ]− ω2 E[τ2]/2. (B.57)

Finally, substituting Eq. (B.57) into Eq. (4.16) yields

lim
f→0

SN (f)

= E[µ] lim
f→0

Re
{

1 + φτ (2πf)
1− φτ (2πf)

}

= E[µ] lim
ω→0

Re
{

2− iω E[τ ]− ω2 E[τ2]/2
iω E[τ ] + ω2 E[τ2]/2

}

= E[µ] lim
ω→0

Re
{

2− iω E[τ ]− ω2 E[τ2]/2
iω E[τ ] + ω2 E[τ2]/2

× E[τ2]/2− i E[τ ]/ω

E[τ2]/2− i E[τ ]/ω

}

= E[µ] lim
ω→0

Re
{

E[τ2]− 2i E[τ ]/ω − E2[τ ]− ω2 E2[τ2]/4
E2[τ ] + ω2 E2[τ2]/4

}

= E[µ] lim
ω→0

E[τ2]− E2[τ ]− ω2 E2[τ2]/4
E2[τ ] + ω2 E2[τ2]/4
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= E[µ]
E[τ2]− E2[τ ]

E2[τ ]
= E3[µ] Var[τ ], (B.58)

which is identical to Eq. (4.17).

Prob. 4.6 We begin by substitutingk = 2 in Eq. (4.19), yielding

E
{
Z(T ) [Z(T ) + 1]

}

= 2
∫ T

0−
(T − t) G(t) dt

=
∫ T

−T

(T − |t|) G(t) dt +
∫ 0+

0−
(T − |t|) G(t) dt

=
∫ T

−T

(T − |t|) G(t) dt +
∫ 0+

0−
(T − |t|) E[µ] δ(t) dt

=
∫ T

−T

(T − |t|) G(t) dt + T E[µ]. (B.59)

For the integral over the infinitesimal region near the origin in Eq. (B.59), we have
ignored all ofG(t) except for the delta function; see Eq. (3.50). Expressing the
variance in terms of Eq. (B.59) leads to

Var[Z(T )] = E
{
Z(T ) [Z(T ) + 1]

}− E2[Z(T )]− E[Z(T )]

=
∫ T

−T

(T − |t|) G(t) dt + T E[µ]−
∫ T

−T

(T − |t|) E2[µ] dt− T E[µ]

=
∫ T

−T

(T − |t|) {
G(t)− E2[µ]

}
dt, (B.60)

in agreement with Eq. (4.21).

Prob. 4.7.1We again begin with Eq. (3.6), the characteristic function of the interevent
intervals:

φτ (ω) ≡
∫ ∞

0

pτ (t) exp(−iω t) dt

=
∫ ∞

0

[Γ(m)]−1 τ−m
0 tm−1 exp(−t/τ0) exp(−iωt) dt

= [Γ(m)]−1 τ−m
0

∫ ∞

0

tm−1 exp[−(1/τ0 + iω)t] dt

= [Γ(m)]−1 τ−m
0 (1/τ0 + iω)−m

∫ ∞

0

xm−1 exp(−x) dx

= [Γ(m)]−1 (1 + iω τ0)−m Γ(m)

= (1 + iω τ0)−m. (B.61)
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Proceeding to Eq. (3.8) we obtain

Cn = in
dn

dωn ln
[
φτ (ω)

]
ω=0

= in
dn

dωn ln
[
(1 + iω τ0)−m

]
ω=0

= (−1)n+1 m τn
0

dn

dxn ln
[
(1 + x)

]
x=0

= Γ(n) m τn
0 , (B.62)

and in particular, we have

mean = C1 = m τ0

variance = C2 = m τ2
0

C3 = 2m τ3
0

C4 = 6m τ4
0

skewness = C3/C
3/2
2 = 2/

√
m

kurtosis = C4/C2
2 = 6/m.

(B.63)

Prob. 4.7.2For the spectrum, we again substitute Eq. (B.61) into Eq. (4.16) to obtain

SN (f)

= E2[µ] δ(f) + E[µ] Re
{

1 + φτ (2πf)
1− φτ (2πf)

}

= (m τ0)−2 δ(f) + (m τ0)−1 Re
{

1 + (1 + 2πifτ0)−m

1− (1 + 2πifτ0)−m

}

= (m τ0)−2 δ(f) + (m τ0)−1 Re
{

(1 + iθ)m + 1
(1 + iθ)m − 1

× (1− iθ)m − 1
(1− iθ)m − 1

}

= (m τ0)−2 δ(f) + (m τ0)−1 Re
{

(1 + θ2)m + (1− iθ)m − (1 + iθ)m − 1
(1 + θ2)m − (1− iθ)m − (1 + iθ)m + 1

}

= (m τ0)−2 δ(f) +
(m τ0)−1

[
(1 + θ2)m − 1

]

(1 + θ2)m − 2Re{(1 + iθ)m}+ 1
, (B.64)

where we have definedθ ≡ 2πfτ0 to simplify the notation. The two middle terms in
the numerator on the line before Eq. (B.64) form a complex-conjugate pair, so that
their difference has only an imaginary component; taking the real part yields zero. If
desired, further simplification can be achieved by making use of

1 + iθ =
√

1 + θ2

{
1√

1 + θ2
+

iθ√
1 + θ2

}

=
√

1 + θ2
{

cos
[
arctan(θ)

]
+ i sin

[
arctan(θ)

]}
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=
√

1 + θ2 exp
[
i arctan(θ)

]
(
1 + iθ

)m =
(
1 + θ2

)m/2
exp

[
im arctan(θ)

]

Re
{(

1 + iθ
)m}

=
(
1 + θ2

)m/2
cos

[
m arctan(θ)

]
, (B.65)

and substituting Eq. (B.65) into Eq. (B.64).

Prob. 4.7.3We begin by substitutingm = 2 into Eq. (B.64)

SN (f) = (2τ0)−2 δ(f) +
(2τ0)−1

[
(1 + θ2)2 − 1

]

(1 + θ2)2 − 2Re
{
(1 + iθ)2

}
+ 1

= (2τ0)−2 δ(f) +
(2τ0)−1

[
1 + 2θ2 + θ4 − 1

]

1 + 2θ2 + θ4 − 2Re
{
1 + 2iθ − θ2

}
+ 1

= (2τ0)−2 δ(f) + (2τ0)−1 2θ2 + θ4

4θ2 + θ4

= (2τ0)−2 δ(f) + (2τ0)−1 2 + (2πfτ0)2

4 + (2πfτ0)2

= (2τ0)−2 δ(f) + (2τ0)−1

[
1− 1/2

1 + (πfτ0)2

]
. (B.66)

We next substitute Eq. (B.66) into Eq. (3.58) to obtain

G(t) =
∫ ∞

−∞
SN (f) exp(i2πft) df

=
∫ ∞

−∞

{
(2τ0)−2 δ(f) + (2τ0)−1

[
1− 1/2

1 + (πfτ0)2

]}
exp(i 2πft) df

= (2τ0)−2 + (2τ0)−1 δ(t)− (4τ0)−1

∫ ∞

−∞

exp(i2πft)
1 + (πfτ0)2

df

= (2τ0)−1 δ(t) + (2τ0)−2 − (4τ0)−1 (πτ0)−1 π exp
(−|2t/τ0|

)

= (2τ0)−1 δ(t) + (2τ0)−2
[
1− exp

(−|2t/τ0|
)]

. (B.67)

As a next step, substitution of Eq. (B.67) into Eq. (3.52) yields

F (T ) =
1

E[µ]T

∫ T

−T

{
G(t)− E2[µ]

}
(T − |t|) dt

=
1

(2τ0)−1 T

∫ T

−T

{
(2τ0)−1 δ(t) + (2τ0)−2

[
1− exp

(−|2t/τ0|
)]

− (2τ0)−2

}
(T − |t|) dt

= 1− 1
2τ0 T

∫ T

−T

exp
(−|2t/τ0|

)
(T − |t|) dt
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= 1− T

τ0

∫ 1

0

exp(−2xT/τ0) (1− x) dx

= 1− T

τ0

[
τ0

2T
+

τ2
0

4T 2 exp(−2T/τ0)− τ2
0

4T 2

]

=
1
2

+
τ0

4T

[
1− exp(−2T/τ0)

]
, (B.68)

and, finally, Eqs. (B.68) and (3.41) lead to

A(T ) = 2F (T )− F (2T )

= 1 +
τ0

2T

[
1− exp(−2T/τ0)

]− 1
2
− τ0

8T

[
1− exp(−4T/τ0)

]

=
1
2

+
τ0

8T

[
3 + exp(−4T/τ0)− 4 exp(−2T/τ0)

]
. (B.69)

Prob. 4.8.1 For f = 0, the fraction in Eq. (3.67) vanishes for allk exceptk = 0,
whereupon it assumes a value of unity. Thus, the sum collapses to a single term, and
Sλ(0, T ) = SN (0): the delta function in the point process spectrum carries forward
unchanged into the rate spectrum. For0 < |f | < 1/T , we haveSN (0) = µ, as
specified in Eq. (4.9c). Equation (3.67) then becomes

Sλ(f, T ) =
∞∑

k=−∞
SN (f + k/T )

sin2(πfT )
(πfT + πk)2

=
∞∑

k=−∞
µ

sin2(πfT )
(πfT + πk)2

= µ (B.70)

(see Gradshteyn & Ryzhik, 1994, Eq. 1.422.4). The periodicity ofSλ(f, T ) means
that delta functions appear at frequenciesf = k/T for any integerk; the rate and
point process spectra do not agree at these frequencies (hence the frequency limit in
the problem specification). However, they do coincide for all other frequencies.

Prob. 4.8.2From the solution of Prob. 4.7.3, we have

SN (f) = (2τ0)−2δ(f) + (2τ0)−1 − (4τ0)−1

1 + (πfτ0)2
. (B.71)

The first two terms are identical to those for the case of the homogeneous Poisson
process, and we know from the solution of Prob. 4.8.1 that the results for the two
spectra coincide. Since Eq. (3.67) describes a linear relation, we can use these results
for the problem at hand. This leads to

Sλ(f, T )

=
∞∑

k=−∞
SN (f + k/T )

sin2(πfT )
(πfT + πk)2
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= (2τ0)−2δ(f) + (2τ0)−1 −
∞∑

k=−∞

(4τ0)−1

1 + (πfτ0 + πkτ0/T )2
sin2(πfT )

(πfT + πk)2

= (2τ0)−2δ(f) + (2τ0)−1

− (4τ0)−1 + (4τ0)−1 (τ0/T ) coth(T/τ0)
coth2(T/τ0) + cot2(πfT )

= (2τ0)−2δ(f) + (4τ0)−1 +
(4T )−1 coth(T/τ0)

coth2(T/τ0) + cot2(πfT )
, (B.72)

where we used symbolic math software to obtain the line before Eq. (B.72). Alter-
natively, one could substitute Eq. (B.67) into Eq. (3.54), and that result, in turn, into
Eq. (3.47), but this approach requires far more algebra.

Prob. 4.8.3To establish agreement, we take the limitT → 0 in Eq. (B.72):

lim
T→0

Sλ(f, T )

= (2τ0)−2δ(f) + (4τ0)−1 + lim
T→0

(4T )−1 coth(T/τ0)
coth2(T/τ0) + cot2(πfT )

= (2τ0)−2δ(f) + (4τ0)−1 +
(4T )−1(T/τ0)−1

(T/τ0)−2 + (πfT )−2

= (2τ0)−2δ(f) + (4τ0)−1 + (4τ0)−1 (πfτ0)2

1 + (πfτ0)2

= (2τ0)−2δ(f) + (2τ0)−1

[
1− 1/2

1 + (πfτ0)2

]
, (B.73)

which accords withSN (f) in Eq. (B.66).

Prob. 4.9.1 We begin by reiterating Eq. (4.38), which is valid when the rate process
µ(t) varies slowly over the time scale of a single event,

E[τn] = E[µ1−n]
/
E[µ]

E[τ ] = 1
/
E[µ]

E[τ2] = E[µ−1]
/
E[µ]

Var[τ ] = E[τ2]− E2[τ ]

= E[µ−1]
/
E[µ]− 1

/
E2[µ]

=
E[µ] E[µ−1]− 1

E2[µ]

Var[τ ]
E2[τ ]

= E[µ] E[µ−1]− 1
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Cτ =
√

E[µ] E[µ−1]− 1 . (B.74)

Prob. 4.9.2For a gamma-distributed rate, the associated probability density function
takes the form of Eq. (4.45),

pµ(x) =
{

[Γ(m)]−1 µ−m
0 xm−1 exp(−x/µ0) x > 0

0 x ≤ 0,
(B.75)

with its associated moments

E[µn] ≡
∫ ∞

−∞
xnpµ(x) dx

=
∫ ∞

0

xn[Γ(m)]−1µ−m
0 xm−1 exp(−x/µ0) dx

= [Γ(m)]−1µ−m
0

∫ ∞

0

xn+m−1 exp(−x/µ0) dx

= [Γ(m)]−1µ−m
0 µn+m

0

∫ ∞

0

yn+m−1 exp(−y) dy

= [Γ(m)]−1µn
0 Γ(n + m)

E[µ] = mµ0 (B.76)

E[µ−1] = µ−1
0 /(m− 1). (B.77)

Substituting Eqs. (B.76) and (B.77) into Eq. (B.74) yields

Cτ =
√

E[µ] E[µ−1]− 1

=
√

mµ0 µ−1
0

/
(m− 1)− 1

=
√

m
/
(m− 1)− (m− 1)

/
(m− 1)

= 1
/√

m− 1 . (B.78)

Prob. 4.9.3We requirem > 1 so that the integral definingE[µ−1] converges, thereby
making Eqs. (B.77) and (B.78) meaningful.

Prob. 4.10.1For the mean rate we have

E[µ(t)] = E
{

µ0

[
1 + cos(ω0t + θ)

]}

= µ0 + µ0 E
[
cos(ω0t + θ)

]

= µ0 + µ0

∫ 2π

0

(2π)−1 cos(ω0t + θ) dθ

= µ0. (B.79)
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For the autocorrelation of the rate we first set forth the trigonometric identity

cos(x + y) + cos(x− y)
2

= 1
2

[
cos(x) cos(y)− sin(x) sin(y) + cos(x) cos(y) + sin(x) sin(y)

]

= cos(x) cos(y). (B.80)

We then proceed as follows:

E[µ(s)µ(t)] = E
{

µ0

[
1 + cos(ω0s + θ)

]
µ0

[
1 + cos(ω0t + θ)

]}

= µ2
0 + µ2

0 E
[
cos(ω0s + θ)

]
+ µ2

0 E
[
cos(ω0t + θ)

]

+ µ2
0 E

[
cos(ω0s + θ) cos(ω0t + θ)

]

= µ2
0 + 0 + 0
+ 1

2µ2
0 E

{
cos

[
ω0(s + t) + 2θ

]
+ cos

[
ω0(s− t)

]}

= µ2
0 + 1

2µ2
0

{
0 + cos

[
ω0(s− t)

]}

Rµ(t) = µ2
0 + 1

2µ2
0 cos(ω0 t), (B.81)

wherewe have made use of Eq. (B.80), and noted that the expectation of any sine or
cosine function withθ or 2θ in its argument becomes zero, as in Eq. (B.79).

For the coincidence rate we use Eq. (4.24) with Eq. (B.81) to obtain

G(t) = Rµ(t) + E[µ] δ(t)

= µ2
0 + 1

2µ2
0 cos(ω0 t) + µ0 δ(t). (B.82)

Finally, for the normalized variance we employ Eqs. (3.52), (B.79), and (B.82), to
obtain

F (T ) =
1

E[µ] T

∫ T

−T

{
G(t)− E2[µ]

}
(T − |t|) dt

=
1

µ0 T

∫ T

−T

{
µ2

0

2
cos(ω0t) + µ0 δ(t)

}
(T − |t|) dt

= 1 + µ0 T

∫ 1

0

cos(ω0Tx) (1− x) dx

= 1 + µ0 T
[
(ω0T )−1 sin(ω0Tx) (1− x)− (ω0T )−2 cos(ω0Tx)

]1

0

= 1 + µ0 ω−2
0 T−1

[
1− cos(ω0T )

]

= 1 + 2µ0 ω−2
0 T−1 sin2(ω0T/2). (B.83)

Prob. 4.10.2With 2πµ0/ω0 irrational, we sample all possible phases of the rate and
can avoid troublesome cases such asµ0 = nω0/(2π) where interevent intervals cycle
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throughn different values that sum to2π/ω0, but then values depend onθ. The
conditionµ0/ω0 À 1 also permits the use of Eqs. (4.37) and (4.38), but first we
require an expression for the probability density of the rate. Restricting ourselves to
0 ≤ x ≤ 2µ0, the limits of possible values of the rate, we have

Pr{µ < x} = Pr
{

µ0

[
1 + cos(ω0t + θ)

]
< x

}

= Pr
{
cos(ω0t + θ) < x/µ0 − 1

}

= Pr
{
ω0 t + θ mod π > arccos

(
x/µ0 − 1

)}

= Pr
{

ω0t + θ

π
mod 1 >

1
π

arccos
(
x/µ0 − 1

)}

= 1− 1
π

arccos
(
x/µ0 − 1

)

pµ(x) =
d

dx
Pr{µ < x}

=
d

dx

[
1− 1

π
arccos

(
x/µ0 − 1

)]

=
1
π

[
1− (

x/µ0 − 1
)2

]−1/2

µ−1
0

= π−1
[
x(2µ0 − x)

]−1/2
, (B.84)

wheremod(·) indicates the modulo operation. Substituting Eq. (B.84) into Eq. (4.37)
yields

pτ (t) = E[µ]−1 t−3 pµ(1/t)

= µ−1
0 t−3 π−1

[
(1/t) (2µ0 − 1/t)

]−1/2

= (πµ0)−1 t−2 (2µ0 t− 1)−1/2. (B.85)

Prob. 4.10.3An attempt to calculate the second moment ofτ from Eq. (B.85) leads
to

E[τ2] =
∫ ∞

1/(2µ0)

t2 (πµ0)−1 t−2 (2µ0 t− 1)−1/2 dt

= (2/π)
∫ ∞

0

x−1/2 dx

= ∞, (B.86)

where we use the substitutionx ≡ t/(2µ0 − 1). Alternatively, we could employ
Eqs. (4.38) and (B.84), but the numeratorE[µ−1] would suffer from the corresponding
problem of a singularity (µ−3/2) near the origin.

The faulty assumption lies in the rate varying an infinitesimal amount during an
interevent interval. This remains true except fort near the minima of the rate, at which
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times the effective rate approaches zero; hereµ(t)/ω0 À 1 does not hold (although
µ0/ω0 À 1 still does), and the effective interevent time approaches infinity, which
leads to a diverging second moment.

One way to eliminate this problem is to decrease the modulation deptha below
unity (a < 1) by making use of the rate function

µ(t) = µ0

[
1 + a cos(ω0 t + θ)

]
(B.87)

in place of Eq. (4.46). Equation (4.46) then becomes a special case of Eq. (B.87) with
a = 1.

Prob. 4.11.1We begin by defining

a1 = µ1 T
a2 = µ2 τ0

(B.88)

to simplify the notation. We note that the number of events in each secondary count-
ing processN2,k(τ0) has a mean equal to the rateµ2 times its durationτ0, or a2.
Equation (4.41) then simply yields the mean number of events indN3(t) as

E[N3(T )] = µ3 T

= E[µ1] E[Mk] T
= µ1 a2 T

= a1 a2. (B.89)

Since we haveT/τ0 À 1 andµ1τ0 ¿ 1, we can assume that the events counted
in an intervalT will include full clusters of events, and effectively none of the sec-
ondary processes will span the edges of the counting windowT . The secondary
processes form identical segments of homogeneous Poisson point processes with
identical rates for identical times. Therefore, the numbers of events in the secondary
counting processesN2,k(τ0) follow a Poisson counting distribution with mean value
a2. Similarly, the numbers of events in the primary point processdN1(t) also follow
a Poisson counting distribution, but with mean valuea1.

We now proceed to calculate the variance, beginning by conditioning on the number
of events in the primary process

Var
[
N3(T )

∣∣ N1(T ) = n
]

= n2 Var
[
N2,k(τ0)

]

= n2 a2

Var
[
N3(T )

]

=
∞∑

n=0

Var
[
N3(T )

∣∣ N1(T ) = n
]

Pr{N1(T ) = n}

=
∞∑

n=0

n2 a2 exp(−a1) an
1/n!
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= a2 exp(−a1)
∞∑

n=1

nan
1/(n− 1)!

= a2 exp(−a1)
∞∑

m=0

(m + 1) am+1
1 /m!

= a2 exp(−a1) a1

[
exp(a1) + a1 exp(a1)

]

= a1 a2(1 + a1)

= µ1 µ2 τ0 T (1 + µ1T ). (B.90)

Finally, we obtain the normalized variance as the ratio of Eqs. (B.90) and (B.89):

F (T ) =
µ1 µ2 τ0 T (1 + µ1 T )

µ1 µ2 τ0 T
= 1 + µ1T. (B.91)

This point process thus has a normalized variance that increases linearly with the
counting time, unlike the Poisson process for which the normalized variance assumes
a constant value of unity. The associated counting distribution, known as the Neyman
Type-A distribution (Neyman, 1939), is discussed in Sec. 10.2.1.

Prob. 4.11.2When the rate is zero, the primary process generates no events; with no
primary events, no secondary events occur either. Therefore, transmitting a “zero”
and receiving a “one” cannot occur.

To determine the probability of transmitting a “one” and receiving a “zero,” we first
condition on the number of events generated by the primary point processdN1(t).
For each event indN1(T ), the probability of generating zero events in the associated
counting processN2,k(τ0) simply becomese−a2 from the definition of the Poisson
counting distribution [see Eq. (4.7)]. WithN1(T ) = n, for N3(T ) = 0 we require
that alln events fail to generate secondary events; employing the mutual independence
of the secondary point processdN2,k(t) yields a probability[e−a2 ]n = e−na2 . The
unconditional probability is obtained by summing over the possible conditions for
N1(T ):

Pr{N3(T ) = 0
∣∣ µ1(t) = µ1}

=
∞∑

n=0

Pr{N3(T ) = 0
∣∣ N1(T ) = n} Pr{N1(T ) = n}

=
∞∑

n=0

e−n a2 e−a1 an
1

/
n!

= exp(−a1)
∞∑

n=0

(
e−a2 a1

)n /
n!

= exp(−a1) exp
(
e−a2 a1

)

= exp
[−a1

(
1− e−a2

)]
. (B.92)
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B.5 FRACTAL AND FRACTAL-RATE POINT PROCESSES

Prob. 5.1.1 Using a straight edge on the descending low-frequency portions of the
computer andgeniculate data presented in Fig. 5.1, we find thatα̂S ≈ 0.8 for
thecomputer curve andα̂S ≈ 2.0 for thegeniculate curve. Using the same
straight edge on the ascending large-counting-time portions of thecomputer and
geniculate data presented in Fig. 5.2, we find thatα̂A ≈ 0.7 for thecomputer
curve and̂αA ≈ 1.9 for thegeniculate curve. Thus,̂αA + (−α̂S) ≈ 0 for both
sets of data. The two exponents do not sum precisely to zero because both estimators
exhibit variance, as discussed in Chapter 12.

Prob. 5.1.2The normalized-variance scaling exponentα̂F ≈ 0.8 for thecomputer
data accords well with the normalized Haar-wavelet variance resultα̂A ≈ 0.7 as well
as with the spectral result̂αS ≈ 0.8. For thegeniculate data, on the other hand,
α̂F ≈ 1.0; this lies significantly below the spectral and wavelet valuesα̂S ≈ 2.0 and
α̂A ≈ 1.9, respectively, which are computed using the same data. The normalized-
variance scaling exponent cannot exceed unity, in accordance with the restriction
provided in Eq. (5.27). This example signals that one must use caution when making
use of the normalized variance.

Another example in which the scaling exponent provided by the normalized vari-
ance can be misleading arises when nonstationarity is present. Careful analysis reveals
that nonstationarity in a nonfractal point process can masquerade as fractal behavior
with α̂F = 1.0, as shown in Eq. (5.33). A demonstration of this is provided by the
spike train recorded at the lateral superior olivary complex in the mammalian auditory
system (Teich et al., 1990).

Prob. 5.2.1 Using a straight edge to measure the slopes of the curves in Figs. 5.1
and 5.7, we find that̂αS and α̂Sτ lie below unity for four sets of data:cortex,
computer, cochlea, andretina; and lie above unity for the remainder.

Prob. 5.2.2(i) Because of the decreasing power-law dependence of the rate spectrum,
it appears that all seven data sets can be represented by fractal-based point processes.
However, one measure alone is seldom sufficient to reach such a conclusion. (ii) In
accordance with the criteria set forth in Sec. 5.5.1, data sets that exhibitα̂S > 1 cannot
be fractal point processes. Thus, use of the point-process spectrum alone leaves four
point processes as possible fractal point processes:cortex,computer,cochlea,
andretina. (iii) Based only on the data presented in Fig. 5.1, these four processes
could represent fractal renewal processes. (iv) According to the characteristics spec-
ified in Sec. 5.5.2, all seven point processes are possibly fractal-rate point processes.

Prob. 5.2.3 (i) Again, because of the decreasing power-law dependence of the rate
spectrum, it appears that all seven data sets represent fractal-based point processes.
However, this conclusion is strengthened substantially for all data sets because two
different fractal measures exhibit the power-law dependence. (ii) The fractal expo-
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nents extracted from the interval spectrum are quite similar to those obtained from
the point-process spectrum. This confirms that the same four point processes spec-
ified above could be fractal point processes:cortex, computer, cochlea, and
retina. (iii) However, the power-law behavior in the interval spectrum tells us that
these four fractal-based point processescannotbe fractal renewal processes. As dis-
cussed in Sec. 5.5.4, the interval spectrum of a fractal renewal process resembles that
of a nonfractal renewal process, such as the homogeneous Poisson, which does not
have power-law behavior. (iv) All seven point processes remain candidate fractal-rate
point processes. In fact, since fractal point processes other than the fractal renewal
process are encountered only infrequently, it is likely that all seven point processes are
indeed fractal-rate point processes. This hypothesis can be tested in other ways, such
as by examining the generalized dimension (see Prob. 5.5) and by using surrogate-data
techniques (see Secs. 11.4 and 11.5).

Prob. 5.2.4The close agreement betweenα̂S andα̂Sτ suggests that̂Sτ (f) can indeed
be used to provide a good estimate of the fractal exponent, at least for some fractal-
based point processes (assuredly not for fractal renewal processes). The limitations of
using interval-based measures as identification tools for fractal-based point processes
are addressed in more detail in Sec. 12.3.1.

Prob. 5.2.5 Computation of the interval spectrum treats the data as a collection of
discrete-time samples so that the maximum interval frequencyf = 1

2 byconstruction.

Prob. 5.3.1 Using a straight edge to measure the slopes of the curves in Figs. 5.2
and 5.8, we find that̂αA andα̂Aτ both lie below unity for four sets of data,cortex,
computer, cochlea, andretina, and above unity for the remainder. The result
matches that obtained by examining Figs. 5.1 and 5.7 (see Prob. 5.2.1).

Prob. 5.3.2 (i) Because the normalized Haar-wavelet variance increases as a power-
law function of the counting time, it seems that all seven data sets can be represented
by fractal-based point processes. However, again, one measure alone is seldom
sufficient to assure such a conclusion. (ii) Data sets that exhibitα̂A > 1 cannot be
fractal point processes, according to Sec. 5.5.1. Using this measure alone again leaves
only four point processes as possible fractal point processes:cortex, computer,
cochlea, andretina. (iii) These same four processes could be fractal renewal
processes. (iv) According to Sec. 5.5.2, all seven point processes could be fractal-
rate point processes.

Prob. 5.3.3 (i) All seven data sets are likely representable by fractal-based point
processes since two separate fractal measures indicate the presence of power-law
behavior. (ii) The fractal exponents extracted from the normalized interval wavelet
variance are similar to those from the normalized Haar-wavelet variance. This con-
firms that the same four point processes withα̂ < 1 could be fractal point processes.
(iii) However, the presence of power-law behavior in the normalized interval wavelet
variance indicates that the four possible fractal point processes indicated above can-
not be fractal renewal processes. Like all interval-based measures, the normalized
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interval wavelet variance for a fractal renewal process resembles that for a nonfrac-
tal renewal process, which is devoid of power-law behavior. (iv) All seven point
processes still remain candidates as fractal-rate point processes. Together with the
information provided by the point-process and interval spectra (see Prob. 5.2), this is
very likely the case.

Prob. 5.3.4 The reasonable agreement between the values ofα̂A and α̂Aτ again
suggests that̂Aτ (k) can be used to provide a good estimate of the fractal exponent,
subject to the various limitations discussed in Sec. 12.3.1.

Prob. 5.3.5 As with the interval spectrum (see Prob. 5.2.5), the data are taken as
discrete-time samples so that the minimum value ofk is 2 by construction.

Prob. 5.4.1 The interevent-interval histogram, in isolation, reveals little about the
nature of the underlying point process. In particular, it cannot be used to determine
whether a point process represents a fractal-based point process, a fractal point pro-
cess, a fractal renewal process, a fractal-rate point process, or indeed a nonfractal
point process in many cases. However, it does allow elimination of the options of
fractal point process and fractal renewal process if the histogram fails to exhibit a
power-law region. However, the converse is not true: the presence of power-law be-
havior in the interevent-interval histogram doesnotdefinitively indicate that the point
process is a fractal renewal process. This is because the ordering of the intervals can
conspire to create a power-law interevent-interval histogram even though the intervals
are not independent and identically distributed. Indeed, we will examine just such an
example in Probs. 7.8 and 11.12.

Examining all of the histograms in Fig. 5.9 reveals that only three of the point
processes exhibit what could be even remotely considered a region of power-law
behavior:synapse, cortex, andcomputer. Each of these histograms displays
approximately straight-line behavior over a range of interevent intervals whose ratio
is about 30. While this is not sufficient to provide a convincing argument for the
presence of power-law behavior, the other four point processes exhibit far less, if any
at all. Of all the point processes, therefore, only these three can conceivably belong
to the class of fractal renewal processes.

Prob. 5.4.2 The solution to Prob. 5.2 tells us thatα̂S and α̂Sτ lie below unity for
four sets of data:cortex, computer, cochlea, andretina. The use of the
rate and interval spectra thus leave these four point processes as possible fractal point
processes. However, as explained in the solution to Prob. 5.2, the presence of power-
law behavior in the interval spectrum for all of these data sets indicates that these
four processescannot be fractal renewal point processes. These conclusions are
confirmed by the results for the normalized Haar-wavelet variance and normalized
interval wavelet variance, as reported in Prob. 5.3.

Combining this information, we conclude that all seven data sets very likely rep-
resent fractal-based point processes. None can be a fractal renewal process but four
(cortex, computer, cochlea, andretina) can conceivably be fractal point
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processes other than fractal renewal processes. The generalized dimensionDq pro-
vides a more definitive test (see Prob. 5.5).

Prob. 5.5.1 Since we normalize by the estimated mean interval, we can use any
theoretical mean values to simulate the data sets. We choose unity for convenience.
Figure B.3 presents the results of these simulations. For the fractal renewal process,

FITFRP SIM.THEORYHPP SIM.

NORMALIZED BOX SIZE T=bE[� ℄CAPACITY-D
IMENSIONS
Fb� 0(T)

10410210010�210�410�6

105104103102101100
Fig. B.3 Capacity-dimension scaling functions (SF)η̂ 0(T ), based on Eq. (3.74), for two
simulated point processes: a homogeneous Poisson process (solid curve) and a fractal renewal
process (short-dash curve). We also include the theoretical result for the former process (long-
dash curve), discussed in Prob. 4.3, and a power-law fit given by

√
T/T0, with T0 ≡ 3×10−5

for this particular simulation (dotted curve).

the capacity-dimension scaling function provided in Eq. (3.74) increases asT γ =
√

T
over a broad range of counting timesT , yielding D̂0 = 1

2 andidentifying the data
as a fractal point process rather than a fractal-rate point process. The homogeneous
Poisson process, in contrast, yields a scaling function that varies only as integer
powers of the counting time: zero forT ¿ Ê[τ ], and unity forT À Ê[τ ].

Prob. 5.5.2All of the experimental curves displayed in Fig. 5.10 bear a strong simi-
larity to those associated with the homogeneous Poisson process shown in Fig. B.3,
exhibiting slopes (power-law exponents) of zero for short times and unity for longer
times. None of these data sets has a fractional value ofD̂0. As expected for any data
set, some variability exists for larger values ofT/Ê[τ ], where the sum extends over
relatively few boxes. The principal distinction among the curves in Fig. 5.10 occurs
nearT = Ê[τ ], where the sharpness of the transition region varies. Theheartbeat

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



FRACTAL AND FRACTAL-RATE POINT PROCESSES 431

data set displays the sharpest transition (sharper even than the homogeneous Poisson
process) whereas thesynapse data set exhibits the most gradual transition.

The variation in sharpness of the curves nearT = Ê[τ ] stems from the local
variability inherent in the corresponding point processes. For a perfectly periodic
point process (Var[τ ] = 0) andT ≥ τ , the point-process events will be distributed
as evenly as possible among the counting windows. This gives rise to the minimum
number of windows that are devoid of events [Zk(T ) = 0], which maximizes the
sum in Eq. (3.74) and thereby minimizesη0(T ). Theheartbeat data most closely
follow such a periodic form, and therefore exhibit the lowest value ofη̂0(Ê[τ ]). The
largest value of̂η0(Ê[τ ]) obtains for thesynapse data, which exhibits significant
variability, departing most strongly from a periodic form. A number of measures
can be used to index point-process variability as it affectsη̂0(T ). The count-based
coefficient of variation evaluated atT = Ê[τ ] turns out to accurately predict the
behavior. Although not quite as reliable, the interval-based coefficient of variationCτ

[Eq. (3.5)] also provides a useful guide nearT = Ê[τ ]. Visual inspection of Fig. 5.9
confirms that thesynapse andheartbeat data have large and small values ofĈτ ,
respectively. The interval-based serial correlation coefficient [Eq. (3.17)] has little
relevance tôη0(Ê[τ ]) for the data sets examined. We confirmed this by randomly
shuffling the intervals (see Sec. 11.5) of thesynapse data and recomputinĝη0(T );
the results nearly coincided with those of the original data.

Prob. 5.5.3Except for transition regions of various widths, and variability associated
with small numbers of boxes, the curves lie parallel to each other so thatD̂q has
essentially the same value, whatever the value ofq. All curves exhibit power-law
exponents of zero for short times, and unity for longer times, just as for the homoge-
neous Poisson process, a nonfractal object (see Prob. 4.3 and Fig. B.3). We conclude
that neither a fractal point process nor a multifractal point process provides a good
description for these data. A fractal-rate point process, rather, describes these data.

To determine why the curves for different values ofq are parallel, rather than
coincident, we examine the transition timesT̂Dq at which the slopes change. Although
T̂Dq lies within an order of magnitude of̂E[τ ] for the synapse data displayed in
Fig. 5.11, it clearly decreases asq increases: it diminishes by a factor of about 7
betweenq = −1 (solid curve) andq = 2 (dash-dot curve). On the other hand, for the
interneuron data displayed in Fig. 11.18, as well as for a simulated homogeneous
Poisson process (not shown),T̂Dq essentially coincides witĥE[τ ], regardless ofq.

As part of a diagnostic process to determine the role played by interevent-interval
ordering with respect to the dependence ofT̂Dq on q, we shuffle thesynapse data
(see Sec. 11.5) before computing the generalized-dimension scaling functionsη̂q(T ).
The values of̂TDq then turn outnot to depend onq, and the behavior of the shuffled
synapse data is similar to that of the (unshuffled)interneuron and simulated-
Poisson-process data. This indicates that interval ordering plays an important role
in determining the dependence ofT̂Dq on q. In contrast, interval ordering plays
essentially no role in determining the sharpness of the transition inη̂ 0(T ) nearT =
Ê[τ ], as discussed in Prob. 5.5.2.
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Calculation of the interval serial correlation coefficient [Eq. (3.17)] proves useful
in elucidating this role. As mentioned above, this measure does not prove useful for
explaining the sharpness of the transition inη̂ 0(T ) nearT = Ê[τ ]. The outcome is
%̂τ (1) ≈ 0.3 for thesynapse data, while it is far smaller for theinterneuron data
[%̂τ (1) ≈ 0.08] and for the simulated homogeneous Poisson process with the same
number of intervals (2644) as thesynapse data [̂%τ (1) ≈ 1/

√
2644 ]. The decrease

of T̂Dq with increasingq appears to be linked to the presence of correlated intervals;
it also depends on the presence of heavy tails.

To confirm this connection, we generated a correlated random sequence from a
homogeneous Poisson process, with unity mean rate and 2644 intervals, by adding
0.01k to thekth interval. If {τk} is the sequence of independent, identically dis-
tributed intervals comprising the initial process, the modified process then has the
sequence{τk + 0.01k}. The modified process has a large positive interval serial
correlation coefficient (0.98), although it does not have nearly the range of values
that thesynapse data does (the modified-Poisson process has skewness and kurtosis
near zero, whereas for thesynapse data these values are 6 and 69, respectively).
Nevertheless, the progression ofT̂Dq with q for the correlated random sequence and
for thesynapse data are similar.

What is the underlying origin of this progression? Asq increases, the quantity
ηq(T ) = [

∑
k Zq

k(T )/N(L)]1/(q−1) depends more and more strongly on the largest
value ofZk(T ) overk, whichηq(T ) approaches for very large values ofq. Similarly,
for large-magnitude negativeq, the smallest value ofZk(T ) dominatesηq(T ). We
now compare the expected results for a clustered point process on the one hand, with
those for a nonclustered point process (such as the homogeneous Poisson process)
on the other hand: the clustered process will have a greater number of larger and
smaller values ofZk(T ) than will the nonclustered process. For largeq, this will
result in a larger effective value of̂ηq(T ), whereas for large-magnitude negativeq, it
will result in a smaller effective value ofηq(T ). We conclude that for clustered point
processes, the curves for large positiveq will be shifted to the left, while those for
large-magnitude negativeq will be shifted to the right. This is precisely the behavior
observed in thesynapse data displayed in Fig. 5.11. The effect is more pronounced
for intervals with heavy tails since the clustering effect is then that much stronger.

Prob. 5.6 The difference between these two expressions forRZ(k, T ) lies in the
evaluation of the integral. We have

∫ k+1

k−1

xα−1
(
1− |x− k|) dx

=
∫ k

k−1

xα−1
[
1− (k − x)

]
dx +

∫ k+1

k

xα−1
[
1− (x− k)

]
dx

=
∫ k

k−1

[
(1− k) xα−1 + xα)

]
dx +

∫ k+1

k

[
(1 + k) xα−1 − xα

]
dx

= (1− k)
kα − (k − 1)α

α
+

kα+1 − (k − 1)α+1

α + 1
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+ (1 + k)
(k + 1)α − kα

α
− (k + 1)α+1 − kα+1

α + 1

=
(α + 1) kα − (α + 1) kα+1 + (α + 1) (k − 1)α+1 + α kα+1

α (α + 1)

+
−α (k − 1)α+1 + (α + 1) (k + 1)α+1 − (α + 1) kα

α (α + 1)

+
−(α + 1) kα+1 − α (k + 1)α+1 + α kα+1

α (α + 1)

=
(k − 1)α+1 − 2kα+1 + (k + 1)α+1

α (α + 1)
, (B.93)

in accordance with Eq. (5.13).

Prob. 5.7 The expressions in the domainsα < 1 andα > 1 differ only in the signs
of two of the factors. These changes ensure that each factor is positive. Since the two
sign changes cancel for the product, this leaves the result unchanged. For simplicity,
we chose the form forα < 1 for comparison with that forα = 1:

lim
α→1

cos(πα/2) Γ(α + 2)
(2− 2α)

= Γ(1 + 2) lim
α→1

cos(πα/2)
(2− 2α)

= 2 lim
α→1

−(π/2) sin(πα/2)
−2α ln(2)

= 2
(π/2) sin(π/2)

2 ln(2)

=
π

2 ln(2)
, (B.94)

as promised, where we have made use of l’Hôpital’s rule.

Prob. 5.8 Equation (3.61) yields the normalized variance given the spectrum

F (T ) =
2

π2 E[µ] T

∫ ∞

0+

SN (f) sin2(πfT ) f−2 df

= 1 +
2

π2 E[µ]T

∫ ∞

1/B

E[µ] (fS/f) sin2(πfT ) f−2 df

= 1 +
2fS

π2 T

∫ ∞

1/B

sin2(πfT ) f−3 df

= 1 +
2fS

π2T
(πT )2

∫ ∞

πT/B

sin2(x) x−3 dx. (B.95)

Now consider the limit

lim
ε→0

∫ ∞

ε

sin2(x) x−3 dx

ln(1/ε)
= lim

ε→0

− sin2(ε) ε−3

−1/ε

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



434 PROBLEM SOLUTIONS

= lim
ε→0

[
sin(ε)

ε

]2

= 1. (B.96)

Combining Eqs. (B.95) and (B.96), we obtain the approximation

F (T ) ≈ 1 +
2fS

π2T
(πT )2 ln(B/πT )

= 1 + 2fST ln(B/πT )

≈ 1 + 2fST ln(B/T ), (B.97)

where the last step in Eq. (B.97) obtains because in the limitB/T À 1, the term
ln(B/T ) dominatesln(π).

Substituting Eq. (B.97) into Eq. (3.41) yields the normalized Haar-wavelet variance

A(T ) = 2F (T )− F (2T )

= 2 + 4fST ln(B/T )− 1− 4fST ln(B/2T )

= 1 + 4fST
[
ln(B/T )− ln(B/2T )

]

= 1 + 4fST ln[(B/T ) (2T/B)]

= 1 + 4 ln(2)fST, (B.98)

linear inT as we expect forA(T ) with α = 1. Interestingly, retaining the factor of
π within the logarithm in Eq. (B.97) leaves the result of Eq. (B.98) unchanged [see
Eq. (A.37)].

Proceeding to the normalized coincidence rate, we use Eq. (3.55) with Eq. (B.97),
yielding

G(t) = E2[µ] +
E[µ]

2
d2

dT 2

[
TF (T )

]
T=t

G(t)− E2[µ] ≈ E[µ]
2

d2

dt2
[
t + 2fS t2 ln(B/t)

]

= E[µ] fS
d2

dt2
[
t2 ln(B)− t2 ln(t)

]

= E[µ] fS

[
2 ln(B)− 3− 2 ln(t)

]

= E[µ] fS 2 ln(B/e3/2t)

≈ 2E[µ] fS ln(B/t), (B.99)

where we ignore the factor ofe3/2 .= 4.481689, for the same reason as in Eq. (B.97).
Finally, we substitute Eq. (B.99) into Eq. (3.54), and obtain

RZ(k, T ) =
∫ T

−T

G(kT + t) (T − |t|) dt
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≈
∫ T

−T

{
E2[µ] + 2E[µ] fS ln[B/(kT + t)]

}
(T − |t|) dt

= E2[µ]T 2 + 2E[µ] fS

∫ T

−T

ln[B/(kT + t)](T − |t|) dt. (B.100)

We assume thatk À 1 as before, and that the delta function in the coincidence
rate does not lie within the limits of integration in Eq. (B.100). Furthermore, since
k À 1, the argument of the logarithm in Eq. (B.100) changes little over the range of
integration, so that we can ignore thet term in the denominator, whereupon

RZ(k, T ) ≈ E2[µ] T 2 + 2E[µ] fS

∫ T

−T

ln[B/(kT )] (T − |t|) dt

= E2[µ] T 2 + 2E[µ] fS ln[B/(kT )] T 2. (B.101)

Prob. 5.9 Calculation of the spectrum proceeds by substituting Eq. (5.50) into
Eq. (3.57), which yields

SN (f) =
∫ ∞

−∞
G(t) e−i2πft df

= E[µ] + E2[µ] δ(f) + E2[µ] sgn(tG) |tG|1−α

×
∫ ∞

−∞
|t|α−1 e−|t|/B e−i2πft df. (B.102)

Rearranging Eq. (B.102) leads to

SN (f)− E2[µ] δ(f)

= E[µ] + sgn(tG) E2[µ] |tG|1−α

∫ ∞

0

tα−1 e−t/B
[
ei2πft + e−i2πft

]
df

= E[µ] + 2 sgn(tG) E2[µ] |tG|1−α Re
{∫ ∞

0

tα−1 e−t/B ei2πft df

}

= E[µ] + 2 sgn(tG) E2[µ] |tG|1−α Re
{

(1/B + i2πf)−α
∫ ∞

0

xα−1e−x dx

}

= E[µ] + 2 sgn(tG) E2[µ] |tG|1−α Γ(α)Re
{

(1/B + i2πf)−α
}

. (B.103)

Focusing now on the scaling regionf À 1/B, the delta function at zero fre-
quency can be ignored since we are concerned with positive frequencies only. Equa-
tion (B.103) then becomes

SN (f) ≈ E[µ] + 2 sgn(tG)Γ(α)E2[µ]|tG|1−αRe
{
(i2πf)−α

}

= E[µ] + 2 sgn(tG)Γ(α)E2[µ]|tG|1−α(2πf)−αRe
{
(eiπ/2)−α

}

= E[µ] + 2 sgn(tG)Γ(α)E2[µ]|tG|1−α(2πf)−αRe
{
eiαπ/2

}

= E[µ] + 2 sgn(tG)Γ(α)E2[µ]|tG|1−α(2πf)−α cos(απ/2)

SN (f)/E[µ] = 1 + 2 sgn(tG)Γ(α)E[µ]|tG|︸ ︷︷ ︸× cos(απ/2)︸ ︷︷ ︸×(2πf |tG|)−α

︸ ︷︷ ︸. (B.104)
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We display the last term on the right-hand-side of Eq. (B.104) as a product of three
factors (delineated by braces). The first has the same sign astG. Its magnitude could
easily exceed unity, and would lie near unity for a process with non-negligible fractal
behavior. The second factor assumes negative values for1 < α < 3, and lies within
an order of magnitude of unity for1.06377 < α < 2.93623. The final factor can be
much larger than unity, given a sufficiently large value ofB. The product of these
three factors, then, can easily achieve large magnitudes, certainly exceeding unity. If
tG were to have a positive value, then the spectrum would lie below unity for low
frequencies, which is not possible. We conclude thattG cannot be positive.

We now compute the normalized varianceF (T ). This proceeds from Eq. (3.52),
which leads to

F (T ) =
1

E[µ]T

∫ T

−T

{
G(t)− E2[µ]

}
(T − |t|) dt

=
1

E[µ]T

∫ T

−T

{
E[µ] δ(t)

+E2[µ] sgn(tG) (|t/tG|)α−1 e−|t|/B
}

(T − |t|) dt

= 1 + 2 sgn(tG) E[µ]|tG|1−α T−1

∫ T

0

tα−1 e−|t|/B (T − t) dt. (B.105)

Focusing on the range of times0 < T ¿ B permits us to ignore the exponential
factor in Eq. (B.105), which leads to

F (T ) ≈ 1 + 2 sgn(tG) E[µ] |tG|1−α T−1

∫ T

0

tα−1(T − t) dt

= 1 + 2 sgn(tG) E[µ] |tG|1−α T−1 Tα+1

α(α + 1)

= 1 + sgn(tG)
2E[µ] |tG|1−α

α(α + 1)
Tα. (B.106)

By a similar argument as that provided for the spectrum,tG cannot have a negative
sign. SincetG can be neither negative nor positive, it must be zero, indicating that the
analytical form of the coincidence rate postulated in Eq. (5.50) is not suitable. The
form of the normalized variance also confirms that something is awry; it exhibits an
exponent that exceeds unity, which is impermissible.

Prob. 5.10 We begin with the normalized variance. The frequency rangef ¿ fS

corresponds to the time scale1/T ¿ fS orfST À 1; this leads to the limityn →∞.
For large values ofyn, they2

n term inside the parentheses in Eq. (5.17) dominates the
other, constant terms, which we can then ignore. Substituting directly, we obtain

F (T )− 1 →
√

8√
π yn

√√
y2

n
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=

√
8√

πyn

=
2

π
√

fS

T−1/2, (B.107)

in accordance with Eq. (5.20). Equation (3.41) providesA(T ) in terms ofF (T ),
leading to

A(T ) = 2F (T )− F (2T )

A(T )− 1 = 2
2

π
√

fS

T−1/2 − 2

π
√

fS

(2T )−1/2

=
4

π
√

fS

T−1/2 − 2/
√

2

π
√

fS

T−1/2

=
4−

√
2

π
√

fS

T−1/2, (B.108)

which is Eq. (5.21). Finally, we can determine the normalized coincidence rate from
the normalized variance through Eq. (3.55), yielding Eq. (5.19):

G(t) = E2[µ] +
E[µ]

2
d2

dT 2

[
TF (T )

]
T=t

G(t)− E2[µ] ≈ E[µ]
2

2

π
√

fS

d2

dt2

(
t× t−1/2

)

=
E[µ]

π
√

fS

d2

dt2

(
t1/2

)

=
E[µ]

π
√

fS

−t−3/2

4

= − E[µ]

4π
√

fS

t−3/2, (B.109)

wherewe can safely ignore the delta function at zero delay because the pertinent
range of times does not include this value.

Prob. 5.11We begin by computing the normalized variance. Substituting Eq. (5.15)
into Eq. (3.61) yields

F (T ) =
2

π2E[µ]T

∫ ∞

0+

SN (f) sin2(πfT ) f−2 df

=
2

π2E[µ]T

∫ ∞

0

E[µ]
[
1 +

√
f/fS exp(−f/fS)

]
sin2(πfT ) f−2 df

=
2
π

∫ ∞

0

sin2(u) u−2 du +
4

πyn

∫ ∞

0

v−3/2 exp(−v) sin2(ynv/2) dv
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= 1 +
4

πyn

∫ ∞

0

v−3/2 exp(−v)
exp(iynv) + exp(−iynv)− 2

−4
dv

= 1− 1
πyn

∫ ∞

0

v−3/2
{

exp
[−(1− iyn)v

]

+ exp
[−(1 + iyn)v

]− 2 exp(−v)
}

dv

= 1− 1
πyn

(√
1− iyn +

√
1 + iyn − 2

)

×
∫ ∞

0

w−3/2 exp(−w) dw (B.110)

= 1− 1
πyn


2

√√
1 + y2

n + 1
2

− 2


 Γ

(− 1
2

)

= 1− 1
πyn

(√
2
√√

1 + y2
n + 1− 2

) (−2
√

π
)

= 1 +

√
8√

πyn

(√√
1 + y2

n + 1−
√

2
)

, (B.111)

in accordance with Eq. (5.17), where we have definedyn ≡ 2πfST . The evaluation
of the square roots in Eq. (B.110) follows from the relation provided in Eq. (A.38).
The use of a gamma function with negative argument in Eq. (B.110) is permissible
because the integrals from which it derives, in the lines above, are bounded near the
origin. Sincesin(ε) varies asε near the origin, the integral varies asv−3/2+2 =

√
v for

smallarguments. Equations (5.16) and (5.18) for the coincidence rate and normalized
Haar-wavelet variance follow from Eq. (5.17) in a straightforward manner, via the
use of Eqs. (3.55) and (3.41), respectively.

Prob. 5.12Data with nonstationary rates generally yield rate spectra that decay asf−2.
Consider a candidate data set of durationL that has a large nonstationary component,
such that the rate changes significantly over the course of the data set. Estimating
the spectrum involves calculating a Fourier transform of the data (for example, the
familiar fast Fourier transform); this forces the data segment into a periodic form. The
difference between the rate at the beginning and at the end of the signal becomes a
jump discontinuity in the now-periodic signal. Such a discontinuity generally imparts
a f−2 character to the estimated spectrum, so thatα̂S = 2, by virtue of the basic
properties of the Fourier transform. To illustrate this, consider the signalx(t) = t/L,
defined for0 ≤ t < L. Its Fourier series has the form

x(t) =
1
2
−

∞∑
n=1

sin(2πnt/L)
nπ

, (B.112)

andthus decays with (discrete) frequency as1/n, or1/f sincef corresponds ton/L.
The corresponding spectrum therefore decays asf−2. A similar argument applies to
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any signal with a jump discontinuity1; the nonstationarity need not follow the simple
linear form used for the illustration provided here.

Data sets with rate nonstationarities therefore generally yield spectra that decay
asf−2. Three caveats apply, however. First, the effect depends on the size of the
nonstationarity. For a point process with robust fractal behavior but a very small
nonstationary component, the former effect will dominate thef−2 term generated by
the latter effect. Second, not all nonstationarities engender this effect. Consider a
point processdN(t) and a counting timeT such that the sequence of counts{Zk(T )}
is essentially independent, all counts have the same mean, and the variance increases
with count numberk. As a result of this independence, the count autocorrelation
RZ(k, T ) is constant fork > 0, so that the spectrum has nof−2 component despite the
large nonstationarity. However, point processes that take the form of this somewhat
artificial example seldom occur in practice. Finally, employing explicit window
functions ameliorates the effects of nonstationarities. As discussed in Sec. 12.3.9,
the use of a Hanning window reduces the deleterious effects of rate nonstationarities,
causing a spectral artifact to decay asf−6 rather than asf−2, at the cost of effectively
losing half the data.

Further discussion of these issues appears in Secs. 12.3.9 and A.8.1.

Prob. 5.13.1 We begin by dividing the unit interval into3k equal segments, with
0 < k < m, each of lengthT = 3−k; of these, a proportionp = 2k/3k contains
N = 2m/2k points each of the Cantor-set approximation.

By the binomial theorem, the resulting normalized variance becomes

F (T ) = N(1− p)
= (2m/2k)(1− 2k/3k)
= 2m(2−k − 3−k)
= 2m(TD − T ), (B.113)

whereD ≡ log(2)/ log(3) .= 0.630930 is the fractal dimension of the classic triadic
Cantor set. Choosing different starting times for the counting durations (other than the
origin) serves to reduce the normalized variance somewhat, but does not qualitatively
change the argument.

Employing Eq. (3.41) leads to an equation for the normalized Haar-wavelet vari-
ance,

A(T ) = 2F (T )− F (2T )
= 2m(2TD − 2T − 2DTD − 2T )
= 2m(2− 2D)TD. (B.114)

1We could theoretically specify an infinite-extent signal, equal to the data set where it exists and to a
constant value otherwise. We could then calculate the Fourier transform of this signal for all frequencies,
not just for integer multiples of the inverse of the data set duration. However, this infinite-extent signal
still has at least one discontinuity since the constant value cannot match both the beginning and the end of
the data set. As a consequence, thef−2 form emerges for this case as well.
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This expression does indeed vary in a power-law fashion withT , in accord with the
fractal nature of the Cantor set itself.

Prob. 5.13.2To consider the spectral properties of the modified Cantor set, we take
Fourier transforms of Eq. (5.52). Convolutions become multiplications, yielding

F {dNm+1(t)} = 2e−i2πf/3m

cos(2πf/3m)F {dNm(t)} . (B.115)

Since
F {dN0(t)} = F {δ(t)} = 1, (B.116)

an explicit result emerges:

F {dNm(t)} =
m∏

k=1

2e−i2πf/3k

cos(2πf/3k)

|F {dNm(t)}|2 = 2m
m∏

k=1

cos2(2πf/3k). (B.117)

The same results have been obtained by others via different methods (Dettmann,
Frankel & Taucher, 1994).

This expression does not exhibit scaling so that the spectral density does not reveal
fractal behavior in the Cantor set; in particular, Eq. (3.62) does not hold. Thus, for
nonstationary collections of points, we can no longer rely on the validity of relation-
ships that are central to the description of fractal and fractal-rate point processes.

Nevertheless, the fractal character of the Cantor set does leave its imprint on this
measure. Consider Eq. (B.117) evaluated over a range of frequencies extending
from 0 to some maximum frequencyf0 À 1, where we requiref0/3m ¿ 1 to
eliminate effects of finitem. Suppose we now change the maximum frequency to
f0/3. The result will resemble the unscaled version (Lowen & Teich, 1995, Fig. 6),
as a result of the geometric progression of cutoff frequencies in the product; the form
|F {dNm(t)}|2 appears to contain copies of itself (Zhukovsky et al., 2001). Each
factorcos2(2πf/3k) in Eq. (B.117) maps tocos2(2πf/3k−1) in the scaled version.
However, the mapping is not exact, since the factorcos2(2πf) has no corresponding
factor at a lower frequency; thus, plots of Eq. (B.117) are not true fractal objects.
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B.6 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION

Prob. 6.1 Simply substitute the left-hand side of Eq. (6.6) into Eq. (6.1), to obtain

E[BH(as) BH(at)] = 1
2E[B2

H(1)]
(|at|2H + |as|2H − |at− as|2H

)

= |a|2H 1
2E[B2

H(1)]
(|t|2H + |s|2H − |t− s|2H

)

= |a|2H E[BH(s) BH(t)], (B.118)

in agreement with the right-hand side of Eq. (6.6).

Prob. 6.2 SinceBH(t) belongs to the family of Gaussian processes, the difference
between values of the process at different times forms a Gaussian random variable; it
thus suffices to prove that the increments have identical means and variances. Since
E[BH(t)] = 0 by construction, we need only prove that the variance of an increment
depends only on the difference between the two times. We therefore have

E
{

[BH(t + s)−BH(t)]2
}

= E
[
B2

H(t + s)
]
+ E

[
B2

H(t)
]− 2E[BH(t + s)BH(t)]

= E
[
B2

H(1)
] [|t + s|2H + |t|2H − 2 · 1

2

(|t + s|2H + |t|2H − |s|2H
)]

= E
[
B2

H(1)
] |s|2H , (B.119)

which is independent oft. Thus, the increment statistics indeed depend only on the
time span over which the increment exists (s) and not on the absolute time of the two
values (t).

Prob. 6.3.1Substituting Eq. (6.1) into Eq. (6.28) three times yields

ρ(s, t) ≡ E[BH(s) BH(t)]
(
E

[
B2

H(s)
]

E
[
B2

H(t)
])1/2

=
1
2E[B2

H(1)]
(|t|2H + |s|2H − |t− s|2H

)
(
E[B2

H(1)] |s|2H E[B2
H(1)] |t|2H

)1/2

=
|t|2H + |s|2H − |t− s|2H

2|s|H |t|H

= 1
2

(
|t/s|H + |s/t|H−

∣∣∣
√
|t/s| − sgn(s/t)

√
|s/t|

∣∣∣
2H

)
, (B.120)

wheresgn(x) denotesthe sign of the argumentx. Equation (B.120) indeed depends
only on the ratio of the two times,s/t.
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Prob. 6.3.2 For the special cases = −t, we make this substitution into Eq. (B.120)
to obtain

ρ(−t, t) = 1
2

(
| − 1|H + | − 1|H −

∣∣√1− sgn(−1)
√

1
∣∣2H

)

= 1
2

(
1 + 1− |1− (−1)|2H

)

= 1− 22H−1. (B.121)

To makeBH(t) andBH(−t) independent, it suffices to make them uncorrelated since
first- and second-order statistics determine a Gaussian process, andBH(t) has zero
mean. So we require that the autocorrelation coefficient assume a value of zero

ρ(−t, t) = 0

1− 22H−1 = 0
0 = 2H − 1

H = 1
2 , (B.122)

sothat only for regular Brownian motion (H= 1
2 ) do we haveBH(t) andBH(−t)

independent.

Prob. 6.4 The simplest method of proving this result invokes Eq. (2.15) directly, and
leads to

E
[
B2(1)

]
= min(1, 1) = 1. (B.123)

However, substitutingH = 1
2 into Eq. (6.2) yields the same result, as we now show.

We first rewrite Eq. (6.2), making use of a property of the Gamma function presented
in Eq. (5.8). Substitutingx = 2H in Eq. (5.8), and in turn substituting this into
Eq. (6.2), leads to

E[B2
H(1)] = Γ(1− 2H) cos(πH)/(πH)

=
π

sin(2πH) Γ(2H)
cos(πH)

(πH)

=
π

2 sin(πH) cos(πH) Γ(2H)
cos(πH)

(πH)

=
[
2H sin(πH) Γ(2H)

]−1

E[B2
1/2(1)] = 1, (B.124)

as it must.

Prob. 6.5.1We begin by defining

x0 ≡ B(kτ0)
x1 ≡ B[(k + 1)τ0] (B.125)

xh ≡ B[(k + 1
2 )τ0].
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We then have
xh = aN (0, 1) + b + 1

2 (x0 + x1) (B.126)

andit remains to find the constantsa andb. Taking expectations of both sides of
Eq. (B.126) immediately yieldsb = 0, so we may remove it from further consider-
ation. Accounting for this result, we double, square, and take expectations of both
sides of Eq. (B.126), to obtain

4E[x2
h] = 4a2 E[N 2(0, 1)] + E[x2

0] + E[x2
1]

+ 2E[x0 x1] + 2E[x0N (0, 1)] + 2E[x1N (0, 1)]. (B.127)

Since we assume thatN (0, 1) is independent of bothx0 andx1, we can replace
the expectation of the product with the product of the expectations in each case. But
since at least one of the quantities has zero mean (actually, both do), the product of
the expectations assumes a value of zero. Thus, the last two terms in Eq. (B.127)
vanish. The first term on the right-hand side of Eq. (B.127) involves the mean square
of N (0, 1), which assumes a value of unity by construction. Eq. (B.127) therefore
becomes

4E[x2
h] = 4a2 + E[x2

0] + E[x2
1] + 2E[x0 x1]. (B.128)

For the remaining terms, we employ Eq. (2.15). Assumingk ≥ 0 for positive times,
and substituting all of these simplifications into Eq. (B.128) yields

4[(k + 1
2 )τ0] = 4a2 + kτ0 + (k + 1)τ0 + 2kτ0

(4k + 2)τ0 = 4a2 + (4k + 1)τ0

τ0 = 4a2

a =
√

τ0/2, (B.129)

which, in turn, we substitute into Eq. (B.126) to provide the final answer.

Prob. 6.5.2 This method is suitable for regular Brownian motion sinceB(t) has
independent increments; in particular,B[(k + 1

2 )τ0]− B(kτ0) andB[(n + 1
2 )τ0]−

B(nτ0) areindependent fork 6= n.

Prob. 6.5.3 Similarly, the method fails for fractional Brownian motion withH 6= 1
2

becauseBH(t) doesnot have independent increments; in particular,BH [(k+ 1
2 )τ0]−

BH(kτ0) andBH [(n+ 1
2 )τ0]−BH(nτ0) arenot independentfor H 6= 1

2 , regardless
of the value ofk or n.

Prob. 6.6.1 If dN1(t) has a spectrum that decays as∼ f−αX where 1
2 < αX < 1

over some large range of frequencies, then Eq. (5.44) indicates thatdN1(t) must
have a coincidence rate that decays as∼ tαX−1. Equation (4.24) reveals that the
autocorrelation of the ratesXk(t) must, over a wide range of delay timest and for
some cutoff timet1, have a similar form, such as

RX(t) ≈ (t/t1)αX−1. (B.130)
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Subtracting the mean does not change Eq. (B.130).
Direct substitution of Eq. (B.130) into Eq. (6.16) yields

Rµ(t) = 2M R2
X(t) + E2[µ]

≈ 2M(t/t1)2αX−2 + M 2 Var2[X]
= c1

[
1 + (t/t2)2αX−2

]
, (B.131)

wherec1 andt2 are constants implicitly defined by Eq. (B.131). Equation (B.131)
shows thatµ(t) has a different exponent thanX(t); since2αX − 2 = αµ − 1, we
haveαµ = 2αX − 1. Finally, using Eqs. (4.24) and (5.44) once again, we see that
dN2(t) exhibits behavior of the form

SN2(f) ∼ f−αµ = f1−2αX , (B.132)

which stands in contrast to theSN1(f) ∼ f−αX behavior attendant todN1(t). Since
1
2 < αX < 1, we have0 < αµ < 1, and Eq. (5.44) indeed applies.

Prob. 6.6.2 A similar argument to that used for Prob. 6.6.1 shows thatRX(t) must
vary as∼ tαX−1 as before. ButRX(t) approaches a nonzero value for large delay
timest, so it must have a form similar to

RX(t) ≈ E2[X]
[
1 + (t/t1)αX−1

]
, (B.133)

for some cutoff timet1. Direct substitution of Eq. (B.133) into Eq. (6.16) yields

Rµ(t) = 2M R2
X(t) + E2[µ]

≈ 2M
{

E2[X]
[
1 + (t/t1)αX−1

]}2

+ M2 E2[X2]

= 2M E4[X]
[
1 + 2(t/t1)αX−1 + (t/t1)2αX−2

]

+ M2 E2[X2]. (B.134)

The important times here lie in the ranget/t1 À 1, since the tail of the autocorrelation
determines the fractal behavior of the process. The autocorrelation behavior for
t/t1 ¿ 1cannot follow the form above, since that would lead to a large autocorrelation
that exceeds the mean square, an impossibility. Furthermore,t/t1 ¿ 1 corresponds
to high frequencies, where the constant termE[X] dominates the spectrum ofdN1(t),
making other, subtle contributions to the spectrum irrelevant.

Taking the limitt/t1 À 1, we see that the first two terms within the square brackets
in Eq. (B.134) dominate the last, which we therefore neglect. Continuing, we obtain

Rµ(t) ≈ 2M E4[X]
[
1 + 2(t/tG)αX−1

]
+ M2 E2[X2]

= c2

[
1 + c3(t/t1)αX−1

]

= c2

[
1 + (t/t3)αX−1

]
, (B.135)

wherec2, c3, andt3 are constants implicitly defined by Eq. (B.135).
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Equation (B.135) shows thatµ(t) has the same exponent asX(t) for large mean
valuesE[X]. Equations (4.24) and (5.44) thus reveal that the spectrum fordN2(t)
takes the form

SN2(f) ∼ f−αµ = f−αX , (B.136)

which is the same as that fordN1(t).

Prob. 6.7 The exponential transform of a Gaussian process gives rise to a lognormal
process with a mean given by Eq. (6.21) withn = 1:

E[µ] = exp
(
E[X] + Var[X]/2

)
. (B.137)

As shown in Eq. (3.59), this valueE[µ] becomes the high-frequency asymptote of the
point-process spectrum. Turning now to the autocorrelation, Eq. (6.22) provides

Rµ(t) ≈ E2[µ] exp
{

RX(t)− E2[X]
}

= E2[µ] exp
{

E2[X] + c ln(t0/|t|)− E2[X]
}

= E2[µ] exp
[
c ln(t0/|t|)

]

= E2[µ] (|t|/t0)−c. (B.138)

However, since the limit of the autocorrelation for large arguments must approach the
square of the mean, we write

Rµ(t) ≈ E2[µ]
[
1 + (|t|/t0)−c

]
, (B.139)

where we acknowledge the approximate nature of Eq. (6.29).
Taking the Fourier transform of the autocorrelation yields

Sµ(f) ≈
∫ ∞

−∞
Rµ(t) exp(−i2πft) dt

=
∫ ∞

−∞
E2[µ]

[
1 + (|t|/t0)−c

]
exp(−i2πft) dt

= E2[µ] δ(f)
+ 2E2[µ] tc0 cos[π(c− 1)/2] (2πf)c−1 Γ(1− c). (B.140)

Combining Eqs. (B.140) and (4.25) yields

SN (f) = Sµ(f) + E[µ]
= E2[µ] δ(f)

+ E[µ]
{
1 + 2 cos[π(c− 1)/2] Γ(1− c) (2π)c−1 E[µ] tc0 fc−1

}

= E2[µ] δ(f) + E[µ]
[
1 + (f/fS)−α

]
, (B.141)

where we make the connection to Eq. (5.44a) by identifying

α = 1− c

(2πfS)α = 2 cos(πα/2) Γ(α) E[µ] t1−α
0 .

(B.142)
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Prob. 6.8.1For a fixed membrane voltageV , spontaneous vesicular exocytosis would
be expected to lack memory; knowledge of previous event occurrence times would
yield no additional information about the future, beyond that provided by the mean
rateµ of the exocytic events. This lack of memory dictates that the homogeneous
Poisson process characterizes the exocytic events.

Prob. 6.8.2Differentfixedmembrane voltagesV would lead to spontaneous exocytic
patterns different only in their mean rates; the homogeneous Poisson process would
serve as a suitable model for each of these sequences of events, whatever the voltage.
The Poisson rate for each cell would be exponentially related to its cellular membrane
voltage, as prescribed by Eq. (6.30).

Prob. 6.8.3 Since the resting membrane voltageV exhibits1/f -type noise with a
Gaussian amplitude distribution, we accommodate the attendant voltage fluctuations
by replacingV by the fractal Gaussian processV (t) in Eq. (6.30):

µ(t) = A exp{− [EA − qV (t)] /RT } . (B.143)

Because the rateµ(t) is the exponential transform of the Gaussian processV (t),
Eq. (B.143) dictates that the rate behave as fractal lognormal noise. A model for
the discrete exocytic sequence therefore belongs to the Poisson-process family, but is
governed by a rate that varies in accordance with lognormal statistics with a fractal
spectrum. This leads to the fractal-lognormal-noise-driven Poisson process described
in Sec. 6.5.

We connect the results developed here with those provided in Sec. 6.5 by defining
X(t) as a normalized2 version of the membrane voltageV (t):

X(t) ≡ ln(A) + [qV (t)− EA] /RT , (B.144)

so that the rate in Eq. (B.143) can become

µ(t) = exp[X(t)]. (B.145)

Since it is a linear transform of the Gaussian membrane voltageV (t), the auxiliary
processX(t) also behaves as a Gaussian process, with associated mean, variance,
and autocorrelation given by:

E[X] = ln(A) + (q E[V ]− EA) /RT
Var[X] = (q/RT )2 Var[V ] (B.146)

RX(t) = E2[X] + (q/RT )2
{
RV (t)− E2[V ]

}
.

The quantities in Eq. (B.146), when substituted into Eqs. (6.20)–(6.25), yield results
for the point process that describes the exocytic events, and its rate, in terms of the
statistics of the membrane voltage (Lowen et al., 1997a,b).

2 The processX(t) has mixed units. We use this somewhat unusual approach to simplify notation; making
use of a dimensionless process forX(t) yields the same results, albeit with more cumbersome algebra.
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B.7 FRACTAL RENEWAL PROCESSES

Prob. 7.1 We can achieveα = 1
2 by employing eitherγ = 1

2 or γ = 2− 1
2 = 3

2 . For
the former, we make use of Eq. (5.3) together with the first line of Eq. (7.8), which
yield

E[µ]
[
1 + (f/fS)−γ

]
= E[µ]

{
1 + 2

[
Γ(1− γ)

]−1 cos(πγ/2) (2πfA)−γ
}

(f/fS)−1/2 = 2
[
Γ( 1

2 )
]−1 cos(π/4) (2πfA)−1/2

2πfS A =
{

2
[√

π
]−1 2−1/2

}2

A = π−2/fS

.= 0.0101321 sec. (B.147)

Equation (7.2) then provides

1/E[µ] =
1/2

1− 1/2
(A/B)1/2 B

1− (A/B)1−1/2

1− (A/B)1/2

=
√

AB

=
√

(π−2/fS)× 10 6(π−2/fS)
E[µ] = 10−3 π2fS

.= 0.0986960 events/sec. (B.148)

The calculation forγ = 3
2 proceedsalong the same lines. Using the third line of

Eq. (7.8) yields

2πfS A =
{
2(3

2 )−2 (3
2 − 1) Γ(2− 3

2 )
[− cos(3π/4)

]}2

=
{
(4
9 ) Γ( 1

2 ) 2−1/2
}2

A = (4/81)/fS

.= 0.00493827 sec. (B.149)

For this value ofγ, Eq. (7.2) returns

1/E[µ] =
3/2

1− 3/2
(A/B)3/2 B

1− (A/B)1−3/2

1− (A/B)3/2

=
3A

1 +
√

A/B + A/B

=
3(4/81)/fS

1 + 10−3 + 10−6

E[µ] .= 67.5676 events/sec. (B.150)
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Prob. 7.2 For the range of timesA ¿ t ¿ B, both exponentials in Eq. (7.5)
have small arguments and therefore approach unity. Furthermore, we haveKγ(z) ≈
2γ−1 Γ(γ) z−γ , valid for small values of the argumentz (Gradshteyn & Ryzhik, 1994,
Secs. 8.445 and 8.485). Employing these simplifications in Eq. (7.5) yields

pτ (t) =
(AB)γ/2

2Kγ

(
2
√

A/B
) e−A/t e−t/B t−(γ+1)

≈ (AB)γ/2

2 (2γ−1) Γ(γ)
(
2
√

A/B
)−γ t−(γ+1)

=
(AB)γ/2

Γ(γ) (A/B)−γ/2
t−(γ+1)

=
Aγ

Γ(γ)
t−(γ+1)

= γAγ
[
Γ(1 + γ)

]−1
t−(γ+1), (B.151)

which, forA ¿ B, differs from Eq. (7.1) only by the factor
[
Γ(1+γ)

]−1
. By scaling

arguments, the expression corresponding to Eq. (7.4) must also differ by this same
factor, so that

1− φτ (ω) ≈ Γ(1− γ)
Γ(1 + γ)

(iω A)γ . (B.152)

Prob. 7.3 Substituting Eq. (7.4) into Eq. (4.16) yields

SN (f)/E[µ] = Re
{

1 + φτ (2πf)
1− φτ (2πf)

}
, B−1 ¿ f ¿ A−1

≈ Re

{
1 + 1− Γ(1− γ) (i2πfA)γ

1− [
1− Γ(1− γ) (i2πfA)γ

]
}

≈ Re
{

2
Γ(1− γ) (2πfA)γ

[
exp(iπ/2)

]−γ
}

= 2
[
Γ(1− γ)

]−1(2πfA)−γ Re{exp(−iγπ/2)}
= 2

[
Γ(1− γ)

]−1 cos(γπ/2) (2πfA)−γ , (B.153)

where we have made use of Eq. (A.35).

Prob. 7.4.1 For 1 < γ < 2 and A ¿ B, we can take the limitB → ∞ in
Eq. (7.1) before calculating the mean interevent interval. The generalized Pareto
result emerges:

1/E[µ] ≈ γAγ

∫ ∞

A

t−γ dt

≈ γ(γ − 1)−1 A
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A ≈ (
1− γ−1

)
/ E[µ]. (B.154)

Recall that the expression to the right of the large left brace in Eq. (7.8) assumes a value
of unity at the fractal onset frequencyfS . Combining that result with Eq. (B.154)
yields

2γ−2 (γ − 1) Γ(2− γ)
[− cos(πγ/2)

] [
2πfS

(
1− γ−1

)
/ E[µ]

]γ−2 ≈ 1, (B.155)

which relatesE[µ] to fS , as promised.

Prob. 7.4.2For0 < α < 1, we again begin with the mean interevent time; Eq. (7.2)
yields

1/E[µ] =
γ

1− γ
(A/B)γ B

1− (A/B)1−γ

1− (A/B)γ

≈ γ

1− γ
(A/B)γ B

= γ(1− γ)−1 (B/A)1−γ A

1/E[µ] À A

E[µ] ¿ 1/A. (B.156)

Ignoring factors of the order of unity in Eq. (7.8) we obtain

1 = 2γ−2 (γ − 1) Γ(2− γ)
[− cos(πγ/2)

]
(2πfSA)γ−2

1 ≈ (2πfSA)γ−2

1 ≈ 2πfSA

fS ≈ 1/A. (B.157)

Finally, combining Eqs. (B.156) and (B.157) leads to the inequality

E[µ] ¿ fS . (B.158)

Prob. 7.5 We immediately take the limitB → ∞ in Eq. (7.1), as in Prob. 7.4.1.
Equation (3.6) then provides

1− φτ (ω) ≈ γAγ

∫ ∞

A

(
1− e−iωt

)
t−(γ+1) dt. (B.159)

We proceed to integrate by parts, withU = 1− e−iωt anddV = γt−(γ+1) dt, which
leads to

1− φτ (ω) ≈ Aγ iω

∫ ∞

A

e−iωt t−γ dt

= Aγ iω

∫ ∞

iAω

e−x x−γ dx (iω)γ−1

≈ (iωA)γ

∫ ∞

0

e−x x−γ dx

= Γ(1− γ) (iωA)γ . (B.160)
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Prob. 7.6 Forγ = 1
2 wehave

E[τ ] =
√

AB =
√

10−3 × 103 = 1; (B.161)

with a simulation duration ofL = 108 the expected number of events isE[N(L)] =
108. Forγ = 3

2 , on the other hand, the mean interevent time becomes

E[τ ] =
3A

1 +
√

A/B + A/B
=

0.003
1.001001

(B.162)

sothat

E[N(L)] = 108 × 1.001001/0.003 = 3.33667× 1010. (B.163)

Simulating this fractal renewal point process would thus take 333.667 times as long
as forγ = 1

2 . Hence, the total computation time would lie in the neighborhood of
333.667 days, or about a year. Moreover, at four bytes per interval the expected file
size would reach 133.4668 GB, which greatly exceeds the memory of the computer
employed to carry out the calculations. This would necessitate reading in the entire
file for each value of the counting timeT , which would, in turn, greatly increase
the calculation time. An educated guess would then put the computation time in
excess of 20 years. Decreasing the durationL serves to reduce simulation times at
the expense of accuracy in the resulting estimates. For purposes of illustrating fractal
behavior, rather than producing smooth and accurate curves, a durationE[N(L)] =
106 suffices, whereupon the estimated simulation time decreases to about 15 minutes
(see Prob. 12.8).

Prob. 7.7 Since the overall error process has independent interevent intervals, we
consider renewal-point-process models. It therefore remains only to find the form of
the inter-error probability density function. Over long time scales the homogeneous
Poisson process dominates, so that the probability density has an exponential tail.
The long-time cutoff is thusB = τHPP. For time scales shorter thanτclk, additional
events do not register, thereby imposing on the process a practical short-time cutoff of
A = τclk. For other time scales, however, the inter-error probability density function
assumes a power-law form. Thus, Eq. (7.5) provides a good representation for the
fractal renewal point process that characterizes the error events.

Prob. 7.8.1 As shown in Fig. B.4, for the upper and lower cutoffs we haveB̂ ≈ 5
sec andÂ ≈ 20 msec, respectively. For intermediate values of the interevent interval
t, the estimated density function decreases roughly as a straight line on this doubly
logarithmic plot. This indicates a power-law dependence on the interevent interval
t; we estimate the exponent to be−γ̂ ≈ −0.8. Based on Eq. (7.9), a fractal renewal
point process with0 < γ < 1 should exhibitα = γ.

Prob. 7.8.2The dashed curve shown in Fig. B.5 provides a fit of the power-law portion
of Eq. (5.44c) to the normalized-Haar-wavelet-variance data. Relative refractoriness
in the neural-spike-generation mechanism gives rise to the dip below unity of the
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Fig. B.4 A decaying power-law function provides a good fit to the estimated interevent-
interval density for the action-potential sequence recorded from the descending contralateral
movement detector, a visual-systeminterneuron in the locust (Turcott et al., 1995, Fig. 2,
pp. 261–262, cell ADA062). The normalized Haar-wavelet variance for these same data is
displayed in Fig. B.5.

normalized Haar-wavelet variance; it is also responsible for the soft lower cutoffA in
the interevent-interval density (see Sec. 11.2.4). The curve increases with counting
timeT roughly as a straight line; estimating the slope and intercept of the curve gives
α̂A ≈ 0.14 andT̂A ≈ 0.07. Since the values ofγ andα obtained from Figs. B.4 and
B.5 differ so greatly, the data must not derive from a fractal renewal point process.

Prob. 7.8.3 The theoretical fractal-renewal-process power-law-decaying interevent-
interval density fits the data well. In spite of this, the fractal renewal process is not a
suitable model for characterizing this spike train, as will be definitively demonstrated
in Prob. 11.12.

Prob. 7.9There are four reasons why extensive data are not available for this process:
First, a proper analysis requires comparative studies, which involve sequencing related
proteins in a large number of different, related organisms, whereas most sequencing
efforts (such as the Human Genome Project) focus on sequencing the entire genome of
relatively few organisms. Second, other methods for estimating divergence dates yield
imprecise results, making calibration of the model difficult. Third, evolution rates
average about10−7 substitutions per year for most proteins; in most cases, therefore,
relatively few changes occur, making detailed calculation of the sequence-change
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Fig. B.5 An increasing power-law function provides a good fit to the estimated normal-
ized Haar-wavelet variance for the action-potential sequence recorded from the descending
contralateral movement detector, a visual-systeminterneuron in the locust (Turcott et al.,
1995, Fig. 2, pp. 261–262, cell ADA062). However, the estimated exponent is in serious dis-
agreement with that obtained from the estimated interevent-interval density shown in Fig. B.4.

statistics difficult. Finally, very few ancestral DNA samples exist, so substitution
counts depend directly on the accuracy of cladistics, which is a particular method of
phylogenetic analysis (Bickel, 2000). Nevertheless, there are sufficient data to rule
out the homogeneous Poisson process, since it predicts fluctuations in the estimated
substitution rate that are significantly smaller than those observed in real sequences
(Gillespie, 1994). In fact, the data suggest a fractal model (West & Bickel, 1998).
A variety of empirical fractal models exist for characterizing molecular evolution,
including anomalous diffusion (West & Bickel, 1998), the fractal-shot-noise-driven
Poisson process described in Chapter 10 (Bickel & West, 1998a), fractal Gaussian
processes (Bickel, 2000), and fractal renewal point processes (Bickel & West, 1998b).
The last proves simplest from a conceptual perspective so Occam’s razor suggests its
use, although the fractal Gaussian process is more tractable from an analytical point
of view.

Prob. 7.10.1 Setting the integral of Eq. (7.26) to unity yields the normalization
constant:

c ≡ E−1
0

[
exp(−EL/E0)− exp(−EH/E0)

]−1
. (B.164)
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Prob. 7.10.2 If we define characteristic time cutoffsA ≡ τ0 exp(EL/κT ) andB ≡
τ0 exp(EH/κT ), and the power-law exponentγ ≡ κT /E0, the mean waiting time
q(E) is characterized by the power-law density

pq(E)(s) =
γ

A−γ −B−γ
×

{
s−(γ+1) A < s < B
0 otherwise.

(B.165)

Since the times spent in successive traps are independent, the fractal renewal process
follows.

Prob. 7.10.3Integrating over the conditioning yields

pτ (t) =
∫

pτ

[
t|q(E) = s

]
pq(E)(s) ds

=
γ

A−γ −B−γ
t−(γ+1)

∫ t/A

t/B

xγ e−x dx. (B.166)

For the caseA ¿ t ¿ B, the limits in the integral of Eq. (B.166) can be approximated
by zero and infinity, which provides

lim
A/t→0
B/t→∞

pτ (t) =
γ

A−γ −B−γ
t−(γ+1)

∫ ∞

0

xγ e−x dx

=
γ

A−γ
t−(γ+1) Γ(γ + 1)

= γ Γ(γ + 1) Aγ t−(γ+1). (B.167)
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B.8 ALTERNATING FRACTAL RENEWAL PROCESS

Prob. 8.1 Sinceτa andτb have identical distributions, their means and characteristic
functions must also coincide. We therefore haveE[τa] = E[τb] = E[τ ], andφτa(ω) =
φτb(ω) = φτ (ω). Using Eq. (8.5), we have

SX(f) = E[X] δ(f) +
2(2πf)−2

E[τa] + E[τb]
Re

{[
1− φτa(2πf)

] [
1− φτb(2πf)

]

1− φτa(2πf)φτb(2πf)

}

=
E[τ ]

E[τ ] + E[τ ]
δ(f) +

2(2πf)−2

E[τ ] + E[τ ]
Re

{[
1− φτ (2πf)

]2
1− φ2

τ (2πf)

}

=
δ(f)

2
+

(2πf)−2

E[τ ]
Re

{
1− φτ (2πf)
1 + φτ (2πf)

}
, (B.168)

in accordance with Eq. (8.8).

Prob. 8.2 For the low frequency limit, Eq. (8.10) becomes

lim
f→0

SX(f) = lim
f→0

2
(
E[τa] + E[τb]

)−1

(2πf)2 + (2πfS)2

=
2
(
E[τa] + E[τb]

)−1

(2πfS)2

=
2
(
E[τa] + E[τb]

)−1

(
1/E[τa] + 1/E[τb]

)2

=
2E2[τa] E2[τb](
E[τa] + E[τb]

)3

=
E2[τa] Var[τb] + E2[τb] Var[τa](

E[τa] + E[τb]
)3 , (B.169)

in accordance with Eq. (8.6).
For the high-frequency limit, we demonstrate that asf →∞, the limit of the ratio

of Eqs. (8.10) and (8.7) approaches unity:

lim
f→∞

2
(
E[τa] + E[τb]

)−1

(2πf)2 + (2πfS)2

/
2(2πf)−2

(
E[τa] + E[τb]

)−1

= lim
f→∞

(2πf)2

(2πf)2 + (2πfS)2

= lim
f→∞

1
1 + (fS/f)2

= 1. (B.170)
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Prob. 8.3We calculated the characteristic function of an exponential random variable
in Eq. (B.51). To cast this in a form more suitable to our present needs we replaceµ
by E−1[τ ], which provides

φτ (ω) = (1 + iω E[τ ])−1. (B.171)

Substituting Eq. (B.171) into Eq. (8.5), and using the shorthand notationsu ≡ E[τu],
v ≡ E[τv], andω ≡ 2πf yields

SX(f) = E[X] δ(f) +
2ω−2

u + v
Re

{[
1− φτa(ω)

] [
1− φτb(ω)

]

1− φτa(ω)φτb(ω)

}

= E[X] δ(f) +
2ω−2

u + v
Re

{
[1− (1 + iωu)−1] [1− (1 + iωv)−1]

1− (1 + iωu)−1 (1 + iωv)−1

}

= E[X] δ(f) +
2ω−2

u + v
Re

{
[(1 + iωv)− 1] [(1 + iωu)− 1]

(1 + iωu)(1 + iωv)− 1

}

= E[X] δ(f) +
2ω−2

u + v
Re

{ −ω2uv

iω(u + v)− ω2uv
× −i(u + v)/ω − uv

−i(u + v)/ω − uv

}

= E[X] δ(f) +
2ω−2

u + v
Re

{
ω2u2v2 + iωuv(u + v)

ω2u2v2 + (u + v)2

}

= E[X] δ(f) +
2ω−2

u + v
× ω2

ω2 + (u + v)2u−2v−2

= E[X] δ(f) +
2(u + v)−1

ω2 + (1/u + 1/v)2
, (B.172)

in accordance with Eq. (8.10).

Prob. 8.4 We make use of the Fourier relation between the spectrum of a real-valued
process and its autocovariance. For algebraic convenience, we consider the caset > 0
for now. We begin by noting that in the range1 < γ < 2, and forA/B ¿ 1, we have

E[µ] =
∫ B

A

t−(γ+1) dt

/∫ B

A

t−γ dt

≈
∫ ∞

A

t−(γ+1) dt

/∫ ∞

A

t−γ dt

=
A−γ/γ

A1−γ/(γ − 1)
= (γ − 1) γ−1 A−1. (B.173)

Using Eq. (8.11), and then Eq. (B.173), we obtain in the mid-frequency range

SX(f) ≈ 1
2 (γ − 1)−1 Γ(2− γ)

[− cos(πγ/ 2)
]
E[µ]Aγ (2πf)γ−2

= (2γ)−1 Γ(2− γ)
[− cos(πγ/2)

]
Aγ−1 (2πf)γ−2
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RX(t)− E2[X] = 2
∫ ∞

0+

SX(f) cos(2πft) df

= 2
∫ ∞

0

(2γ)−1 Γ(2− γ)
[− cos(πγ/2)

]
Aγ−1 (2πf)γ−2

× cos(2πft) df

= γ−1 Γ(2− γ)
[− cos(πγ/2)

]
Aγ−1 t1−γ (2π)−1

×
∫ ∞

0

xγ−2 cos(x) dx

= γ−1 Γ(2− γ)
[− cos(πγ/2)

]
Aγ−1 t1−γ (2π)−1

× π
/{

2Γ(2− γ) cos
[
(π/2)(2− γ)

]}

= (4γ)−1 Aγ−1 t1−γ , (B.174)

in accordance with Eq. (8.13). Since the correlation must be an even function, the
foregoing result applies fort < 0 as well ast > 0. The notation0+ signifies that the
integral does not contain the delta function inSX(f) atf = 0.

Prob. 8.5.1Proceeding directly from the definition, we have

E[Xn
2 ] = E{ [b + (a− b)X1]

n }

=
n∑

m=0

(
n

m

)
bm (a− b)n−m E

[
Xn−m

1

]

= bn +
n−1∑
m=0

(
n

m

)
bm (a− b)n−m E[X1]

= bn (1− E[X1]) + E[X1]
n∑

m=0

(
n

m

)
bm (a− b)n−m

= bn (1− E[X1]) + E[X1] [b + (a− b)]n

= bn + (an − bn) E[X1] . (B.175)

Prob. 8.5.2The definition of the autocorrelation provides

RX2(t) ≡ E[X2(s)X2(s + t)]
= E

{
[b + (a− b) X1(s)] [b + (a− b)X1(s + t)]

}

= b2 + b(a− b) E[X1(s) + X1(s + t)]
+ (a− b)2 [X1(s) X1(s + t)]

= b2 + 2b(a− b) E[X1] + (a− b)2RX1(t). (B.176)

Prob. 8.5.3Suppose first that the timess ands+t lie in the same “on” period. This will
occur during a proportionp1 of the times, and we then haveE[X2(s) X2(s + t)] =
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E[a2]. For another proportionp2 of the times,s ands+ t lie in different “on” periods,
in which caseE[X2(s) X2(s + t)] = E2[a]. Taking expectations over the conditions,
we then have the overall result

E[X2(s) X2(s + t)] = p1E[a2] + p2E2[a]. (B.177)

Equation (B.177) provides a meaningful result only if we impose the condition
E[a2] < ∞; we therefore require this of the random variablea.

Prob. 8.5.4To find an expression forRX2(t), it suffices to determine the values ofp1

andp2 in Eq. (B.177). We can expressp1 as a product of the probability that a random
time,s, lies in an “on” period, multiplied by the probability that the remaining time
in this “on” period exceedst. For the first element of this product we have simply

E[X1] =
E[τa]

E[τa] + E[τb]
, (B.178)

whereas for the second we have the recurrence time

pϑ(t) =
1− Pτa(t)

E[τa]
. (B.179)

Theproduct of Eqs. (B.178) and (B.179) yields the probabilityp1:

p1 =
E[τa]

E[τa] + E[τb]
× 1− Pτa(t)

E[τa]
=

1− Pτa(t)
E[τa] + E[τb]

. (B.180)

For deterministica fixed ata = 1, we see that bothp1 andp2 contribute toRX1(t);
this actually holds for anya, and we therefore have

p1 + p2 = RX1(t). (B.181)

Combining Eqs. (B.177), (B.180), and (B.181), we obtain the final result

RX2(t) = p1E[a2] + p2E2[a]
= p1

(
E[a2]− E2[a]

)
+ RX1(t) E2[a]

= Var[a]
1− Pτa(t)

E[τa] + E[τb]
+ E2[a] RX1(t). (B.182)

We note that Eq. (B.176) withb = 0 agrees with Eq. (B.182) with deterministica, as
it must.

Prob. 8.6.1 Integrating the power-law density of Eq. (7.1) yields

Pτ (t) =





0 t ≤ A
(A−γ − t−γ) / (A−γ −B−γ) A < t < B
1 t ≥ B.

(B.183)

We can set Eq. (B.183) equal toXU and solve forτ .
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However, since this can involve the difference between two large numbers, it proves
more useful to set Eq. (B.183) equal to1−XU instead. Since1−XU andXU have
identical distributions, this improves the computational accuracy without changing
the underlying mathematics. Solving forτ then yields

τ ≡ AB [(Bγ −Aγ) XU + Aγ ]−1/γ
. (B.184)

Finally, we setγ = 2 − α in accordance with Eq. (8.12), and chooseA = 1/fH

andB = 1/fL. An alternating fractal renewal process constructed from these three
parameters (γ, A,B) will therefore satisfy the design requirements.

Prob. 8.6.2Turning to Eq. (8.17) we have the design constraints

|1− 2r|√
Mr(1− r)

< ε a)

1
M

∣∣∣∣ 1
r(1− r) − 6

∣∣∣∣ < ε. b)

(B.185)

Settingr = 1
2 satisfiesEq. (B.185a) for any value ofM , while choosingr = 1

2 ±
1/
√

12 provides the same for Eq. (B.185b). Since the two values ofr differ, one of the
constraints must be satisfied by adjusting the value ofM . Settingr = 1

2 andsolving
Eq. (B.185b) yieldsM > 2/ε, while settingr = 1

2 ± 1/
√

12 yields M > 2/ε2

via Eq. (B.185a). Sinceε < 1, the former constraint proves less stringent, and we
therefore setr = 1

2 andchoose forM the smallest integer> 2/ε. We therefore
choose components that are symmetric alternating fractal renewal processes, since
r = 1

2 , and sum at least2/ε of them together.
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B.9 FRACTAL SHOT NOISE

Prob. 9.1.1 With identical impulse response functions for eachXm(t), the sole
difference between the resulting processXR(t) and the component processesXm(t)
becomes the times at which the impulse response functions begin. Since these points
derive from an independent homogeneous Poisson process for each processXm(t),
there is no memory at all within or among these point processes. Their superposition
must therefore also lack memory, and must also belong to the homogeneous Poisson
point-process family. The total rate is given byµR =

∑M
m=1 µm, but otherwise

XR(t) andX1(t) do not differ. This definesXR(t) as a shot-noise process.

Prob. 9.1.2 We can still make use of a shot noise framework for characterizing
XR(t) if we employ random values ofK to index the appropriate impulse response
function. In other words, definehR(K, t) so thathR(m, t) = hm(t), and defineK
so thatK = m for a proportionµm/µR of the homogeneous Poisson point-process
events. The absence-of-memory argument of Prob. 9.1.1 remains applicable, so the
resultXR(t) remains a shot-noise process.

Prob. 9.1.3 If the fractal exponents differ for any two of the component shot noise
processesXm(t), saym1 andm2, then the spectrum assumes the form

SXR(f) ≈ (f/fSm1)−αm1 + (f/fSm2)−αm2 . (B.186)

Equation (B.186) must have a breakpoint at some value off , with different effective
slopes (values ofα) on either side of the breakpoint. The result does not belong to
the fractal shot-noise family of processes. Thus, forXR(t) to belong to this family,
we require that allXm(t) have the same value ofα.

Prob. 9.1.4For this impulse response function we have

hm(t) = exp(−cmt)

Hm(f) =
∫ ∞

0

exp(−cmt) exp(−i2πft) dt

=
1

cm + i 2πf

|Hm(f)|2 =
1

c2
m + (2πf)2

|SXm(f)|2 = E2[Xm] δ(f) +
µm

c2
m + (2πf)2

, (B.187)

by virtue of Eq. (9.27).
We now attempt to construct an approximation to a fractal shot-noise process

through the sum of a number of component processesXm(t), with parameters re-
lated in a power-law fashion. Clearly, the component spectraSXm(f) must cross
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each other; otherwise, one would dominate over all frequencies and the trivial result
SXR(f) ∼ f−2 would ensue. Meaningful results thus obtain only if each component
process dominates the whole over its own range of frequencies.

This occurs in the neighborhood of the crossover frequenciesf = cm/(2π),
whereupon

SXR[cm/(2π)] ≈ µm

2c2
m

. (B.188)

SubstitutingEq. (B.188) into the scaling equationSXR(f) ≈ (f/fS)−α, and retaining
the substitutionf = cm/(2π), yields

µm

2c2
m

≈
(

cm

2πfS

)−α

µm cα−2
m ≈ 2(2πfS)α. (B.189)

To minimize variation about the idealf−α behavior ofSXR(f), we maintain a fixed
ratio between adjacent values ofcm. We therefore set

cm = c1 am−1, a > 1, (B.190)

so that Eqs. (B.189) and (B.190) yield

µm = µ1 bm−1

µ1 = 2(2πfS)α c2−α
1

b = a2−α;
(B.191)

we also haveb > 1 for 0 < α < 2.
Finally, we choose a frequency ratioa; this value fora, in combination with

Eqs. (B.190) and (B.191), defines the fractal shot noise processSXR(f). As an
example, we plot the spectrum forα = 1, fS = 1, c1 = 2π, a = 10, andM = 4.
From this, and Eq. (B.191), we obtainµ1 = 2 andb = 0.1, and the spectrum simplifies
to

SXR(f) =
M∑

m=1

10m−1

102m−2 + f2 . (B.192)

FigureB.6 provides a plot ofSXR(f) vs.f ; it demonstrates a close approximation to
the desired1/f form. The component spectra do indeed achieve a value of precisely
1/f at the breakpoints, as designed; however, their overlap causes the sum to exceed
1/f specification by up to a factor of1.42, or 1.5 dB. Nevertheless, over the design
frequency range100 ≤ f ≤ 103, f × SXR(f) remains constant to within±0.34 dB.

Prob. 9.2.1Using Eq. (9.36) we have

∫ ∞

−∞
h(K, s)h(K, s + |t|) ds =

{
K − |t| |t| < K
0 otherwise.

(B.193)

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



FRACTAL SHOT NOISE 461

FREQUENCY f
SPECTRUM
S X(f)

10410210010�2
10010�210�410�6

Fig. B.6 Spectrum as provided in Eq. (B.192) (solid curve). The graph also includes the
four component spectraSXm(f) (dashed curves).

Forming the expectation of Eq. (B.193) involves integrating the right-hand side against
the probability density ofK, for values ofK in excess of|t|. We therefore have

Rh(t) ≡ E
[∫ ∞

−∞
h(K, s) h(K, s + |t|) ds

]
=

∫ ∞

x=|t|
(x− |t|) pK(x) dx. (B.194)

Equations (B.194) and (9.19) together yieldRX(t).

Prob. 9.2.2Solving Eq. (B.194) for the special case of Eq. (9.37) leads to

Rh(t) =
∫ ∞

s=|t|
(s− |t|) pK(s) ds

=
∫ ∞

s=t

(s− t) (β − 1) Aβ−1 s−β ds

= (β − 1)Aβ−1
[
s2−β/(2− β)− t s1−β/(1− β)

]∞
t

= (β − 1)Aβ−1 t2−β
[
(β − 2)−1 − (β − 1)−1

]

= (β − 2)−1 Aβ−1 t2−β . (B.195)

Since we specified that2 < β < 3, the corresponding exponent fort lies in the range
−1 < 2− β < 0, indicating a fractal form. Identifying this with the canonical form
tα−1 for autocorrelation functions and related statistical measures provides

α− 1 = 2− β
α = 3− β, (B.196)
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with α in the range0 < α < 1.

Prob. 9.3 We begin with Eq. (9.38) and proceed by applying a monotonic transfor-
mation, and then substitutingx ≡ cm−D andM≡ Kt−β :

Pr{M ≥ m} = cm−D

Pr{M−D ≤ m−D} = cm−D

Pr
{[

Kt−β
]−D ≤ x/c

}
= x

Pr{cK−D tβD ≤ x} = x

Pr{t ≤ x} = x, (B.197)

where we make the identificationsβ = 1/D andK = c1/D. Equation (B.197) has
the form of a random variable uniformly distributed in the unit interval.

Hence, witht a random time chosen uniformly in the unit interval, the function
Kt−β = (t/c)−1/D has the same probability distribution as that given in Eq. (9.38).
Returning to the original specification of the problem, to obtain the total mass in a
given region of space, we sum a Poisson-distributed number of these random variables.
Consequently, a fractal shot-noise process with impulse response function given by
Eq. (9.2),B = 1, and appropriate mean Poisson rateµ will have an amplitude
distribution equivalent to the total mass in a cluster. For0 < D < 1, we have
1 < β < ∞, yielding a one-sided stable distribution.
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B.10 FRACTAL-SHOT-NOISE-DRIVEN POINT PROCESSES

Prob. 10.1 If two events from a fractal-shot-noise-driven Poisson processdN2(t)
span a large interval, such thatτ > B−A, then the events must derive from different
impulse response functions. Therefore, any relation between the two times must
derive from the primary homogeneous Poisson processdN1(t). This process has an
exponential form for the times between events, and this form propagates todN2(t)
in the absence of any other connection between the events.

Prob. 10.2 Substituting directly into Eq. (10.14), we obtain

F (T ) = 1 +
2E[K2]

aT

∫ min(T,B−A)

0

(T − u)
∫ B−u

A

(t2 + ut)−β dt du

= 1 +
2E[K2]

E[K] (B −A)T

∫ min(T,B−A)

0

(T − u)
∫ B−u

A

dt du

= 1 +
2E[K2]

E[K] (B −A)T

∫ min(T,B−A)

0

(T − u)
[
B − (u + A)

]
du

= 1 +
2E[K2]

E[K] (B −A)T

[
TBu− (B + T −A)

u2

2
+

u3

3

]min(T,B−A)

0

. (B.198)

We now specialize to the two cases:T ≤ B − A andT > B − A. In the former,
Eq. (B.198) becomes

F (T ) = 1 +
2E[K2]

E[K] (B −A)T

[
T 2B − (B + T −A)

T 2

2
+

T 3

3

]

= 1 +
2E[K2]

E[K] (B −A)T

[
T 2 (B + A)

2
− T 3

6

]

= 1 +
E[K2] T (B + A− T/3)

E[K] (B −A)
. (B.199)

Further specializing to the caseB/T À 1 andB/A À 1, Eq. (B.199) simplifies to

F (T ) ≈ 1 +
E[K2] TB

E[K] B

= 1 +
E[K2]
E[K]

T. (B.200)

For this value ofβ, Eq. (10.16) provides

F (T ) ≈ 1 +
E[K2]
E[K]

1− β

1− 2β
B−β T

= 1 +
E[K2]
E[K]

1
1

B0 T
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= 1 +
E[K2]
E[K]

T, (B.201)

in accordance with Eq. (B.200). Finally, forT > B −A, Eq. (B.198) gives rise to

F (T ) = 1 +
2E[K2]

E[K] (B −A)T

[
TB(B −A)

− (B + T −A)
(B −A)2

2
+

(B −A)3

3

]

= 1 +
2E[K2]
E[K] T

[
TB − T

B −A

2
− (B −A)2

2
+

(B −A)2

3

]

= 1 +
E[K2]
E[K]

[
B + A− (B −A)2

3T

]
. (B.202)

Prob. 10.3 We start with Fig. 10.6, and consider a single impulse response function.
The parameters includeβ = 2, A = 1, B = 105, anda = 100, so we have

a ≡
∫

h(t) dt =
∫ B

A

K t−β dt

100 = K

∫ 105

1

t−2 dt = K
(
1− 10−5

)

K ≈ 100. (B.203)

The rate then follows the form100/t2 for A < t < B. At a general timet, a typical
interevent interval generated by this single impulse response function will have a
duration equal to the inverse of this rate, soτ(t) ≈ t2/100. By this timet, we will
have generated aboutN2(t) intervals, where we obtain the counting processN2(t)
through

N2(t) ≈
∫ t

A

h(s) ds

≈
∫ t

1

100 s−2 ds

= 100 (1− 1/t). (B.204)

Combining this information, we can say thatN2(t) ≈ 100 (1− 1/t) intervals will
lie below the limitτ ≈ t2/100; eliminatingt yields about

N2 = 100
[
1− 1

10
√

τ

]
(B.205)

intervals less thanτ . Normalizing Eq. (B.205) to unity asτ →∞ leads to

Pr{τ < s} = 1− 1
10
√

s
. (B.206)
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Finally, taking the derivative of Eq. (B.206) yields the probability density

pτ (s) = (20)−1
s−3/2. (B.207)

The argument presented above remains valid down to interevent intervalsτ ≈
1

/(
KA−2

)
, the inverse of the maximum rate (which occurs at the onset of the impulse

response function); at long interevent intervals, the times between the events of the
primary point processdN1(t) dominate the interevent interval probability density, as
discussed in Prob. 10.1. These limits, as well as the overall form of Eq. (B.207), are
in good accord with the results displayed in Fig. 10.6. A similar argument, although
with different power-law exponents, obtains for any value ofβ > 1; we require only
that most of the area of the impulse response function reside near its onset.

Prob. 10.4.1Equation (9.29) immediately provides a value forβ. Given this value of
β (or α) and the crossover frequencyfS , Eq. (10.27) linksK andB. Equation (9.8),
for n = 1, relates the average rate to the fractal-shot-noise-driven Poisson process
parameters.

Prob. 10.4.2For the specific caseα = 1 with fS = 1 and fixed, deterministicK, we
immediately have thatβ = 1

2 , whereupon Eq. (10.27) yields

(
E[K]/E[K2]

)
(2πfS)α Bα/2 = α Γ2(α/2)/2

(1/K) (2π)
√

B =
(√

π
)2/2

4
√

B = K. (B.208)

Turning to the cumulants of the rate and employing Eq. (B.208), Eq. (9.8) provides

C1 = µE[K] B1−β −A1−β

1− β

≈ µ4
√

B B1/2

1/2
= 8µB

C2 = µE[K2] ln(B/A)

= 16µB ln(B/A)

C3 = µE[K3] A1−3/2 −B1−3/2

3/2− 1

≈ µ 64B3/2 A−1/2

1/2

= 128µB
√

B/A.

(B.209)

Using Eq. (B.209) with Eq. (3.4) then leads to a square of the coefficient of variation
of the rate given by

C2

C2
1

=
16µB ln(B/A)

(8µB)2
=

ln(B/A)
4µB

, (B.210)
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and a square of the skewness of the rate expressed as

C2
3

C3
2

=

(
128µB

√
B/A

)2

[16µB ln(B/A)]3
=

4
µA [ln(B/A)]3

. (B.211)

For large values of the rate coefficient of variation we require small values ofµB
in Eq. (B.210), since the logarithm function varies so slowly. For small values of
the rate skewness we require large values ofµA in Eq. (B.211), again neglecting the
logarithm. The conflict arises because the simultaneous specification of a small value
of µB and a large value ofµA leads toA À B, whereas we defineA < B; in fact,
obtaining a1/f spectrum over an appreciable range of frequencies requiresB À A.
Thus, the rate either has a large coefficient of variation or a small skewness, but not
both. Furthermore, we have not specifiedµ independently ofA andB.

Prob. 10.4.3Aside fromβ = 1
2 whichwe established above, we haveA = 1/fS = 1,

and fromB/A = 103 we obtainB = 103. We also have a mean rate of unity, and
Eq. (B.209) reveals thatC1 = 8µB; together this yieldsµ = (8B)−1 = 1/8000.
Also, Eq. (B.208) providesK = 4

√
B = 4

√
1 000. In summary, we have

β = 1
2

A = 1
B = 1 000
K = 40

√
10

µ = 1/8000.

(B.212)

For the coefficient of variation, we use the parameters provided in Eq. (B.212) in
Eq. (B.210) to obtain

√
C2

C1
=

√
ln(B/A)

4µB
=

√
ln(103)
8µB/2

=
√

6 ln(10) .= 3.71692, (B.213)

while Eq. (B.211) yields the skewness

C3

C
3/2
2

=

√
4

µA [ln(B/A)]3
=

√
32B/A

8µB
[
ln(103)

]3 =

√
32 000

[3 ln(10)]3
.= 9.85302.

(B.214)
Equation (B.212) defines a process with significant variation.

Prob. 10.5We base our argument on the results provided in Table 9.1, which divides
into two regions of interest. Forβ ≤ 1 andB = ∞, the impulse response function
h(t) has infinite area in its tail, and the results in Sec. A.6.1 indicate that the resulting
shot noise process has an infinite value at all times with probability one. Using this
as a rate for a Poisson point process yields a collection of points infinitely dense at
every time. We haveN2(t + ε) − N2(t) = ∞, with probability one, for anyt and
ε > 0, even if we use the process itself or its rate to selectt or ε. This is far from an
orderly process.
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For β ≥ 1 andA = 0, the infinite area now lies near the origin. This leads to
shot noise with a stable amplitude density; the corresponding point process remains
well-behaved except near the onset times of the impulse response functions. Here
an infinite number of events exist after each impulse response function commences.
If we let tk denote any of the events in the primary Poisson point processdN1(t)
from which the shot noise derives, then we haveN2(tk + ε) − N2(tk) = ∞, with
probability one, for anyε > 0. Again, the resulting point processdN2(t) is not
orderly.

Prob. 10.6.1This description applies fort > 0. Fort < 0 the electromagnetic shock
wave generated by the particle has not yet reached the observation point, so that all
fields remain zero and no photons are yet present there.

Prob. 10.6.2The electric field becomes

E = −∇φL − c−1 ∂AL/∂t

= −2qJ 2n−2
[
(x− vt)2 − J 2(y2 + z2)

]−3/2 {x− vt, y, z}
= 2qJ 2n−2

[
(vt)2 + 2Jdvt

]−3/2 {vt + Jd, 0, −d}
= 2qJ 2n−2v−2[t2 + 2t1t]−3/2 {t + t1, 0, −d/v} , (B.215)

where we definet1 ≡ Jd/v = d(n2c−2 − v−2)1/2. The magnetic field becomes

H = B

= ∇⊗AL

= 2qvc−1
[
(x− vt)2 − J 2(y2 + z2)

]−3/2 {
0, J 2z, −J 2y

}

= 2qdvJ 2c−1
[
(vt)2 + 2Jdvt

]−3/2 {0, 1, 0}
= 2qdJ 2c−1v−2[t2 + 2t1t]−3/2 {0, 1, 0} , (B.216)

where⊗ again denotes the vector cross product.
This leads to expressions for the Poynting vector and the photon flux density given

by

S ≡ (4π)−1cE⊗H

= (4π)−1c(2qJ 2n−2v−2)(2qdJ 2c−1v−2)[t2 + 2t1t]−3

× {t + t1, 0, −d/v} ⊗ {0, 1, 0}
= π−1q2dJ 4n−2v−4[t2 + 2t1t]−3 {d/v, 0, t + t1} (B.217)

h(t) ≈ |S|/hE[ν]

= (πh E[ν])−1q2dJ 4n−2v−4
[
t2 + 2t1t

]−3 [
t2 + 2t1t + t21 + (d/v)2

]1/2

= (πhE[ν])−1q2dJ 4n−2v−4
[
t2 + 2t1t

]−3 [
t2 + 2t1t + (nd/c)2

]1/2

= (πhE[ν])−1q2dJ 4n−2v−4
[
t2 + 2t1t

]−3 [
t2 + 2t1t + t22

]1/2
, (B.218)

where we definet2 ≡ nd/c.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



468 PROBLEM SOLUTIONS

Casting this photon-flux-density time function in the form of a simple power-law
impulse response function, as in Eq. (9.2), yields the following results. The photon
flux density exhibits a power-law decay with a power-law exponent that increases at
the crossover timet = t1, and decreases at timet = t2. No real medium will pass
frequency components of arbitrarily high frequency, and indeed all systems have
practical limits to the frequency components that appear at the output (see Sec. 2.3.1
for a discussion pertinent to this issue). The difference between the upperνu and
lowerνl frequency limits forms the system bandwidth,νu − νl. Similarly, the onset
time of the light pulse cannot exceed a value roughly equal to the inverse of the
bandwidth; we therefore definet0 ≡ (νu − νl)−1. In addition, the nonzero size of
the charged particle imposes a limit on the onset time (Zrelov, 1968), although this
limit proves relatively unimportant since we can assume that the wavelength of the
generated photons greatly exceeds the particle size.

The photon-flux-density time functionh(t) thus follows the form

h(t) ∼





0 for t < t0
t−3 t0 < t < t1
t−6 t1 < t < t2
t−5 t > t2.

(B.219)

Even for relatively narrow bandwidths, the onset timet0 often remains several orders
of magnitude smaller thant1, ensuring a large range of times for whicht−3 behavior
is observed. For example, using a 150-mCi radon source,Čerenkov (1938) studied
radiation from a number of liquids in the wavelength range536 to 556 nm, which
gives the onset time

t0 ≡ (νu − νl)−1 =
(

3.00× 108 m / s

536× 10−9 m
− 3.00× 108 m / s

556× 10−9 m

)−1

≈ 50 fsec.

(B.220)
Particles traveling close to the speed of light through materials with a refractive

index as low as1.2, with d as small as1 cm to the observation point, yield a crossover
time t1 ≈ 22 psec, almost three orders of magnitude slower. Most media have much
larger bandwidths, and correspondingly larger differences betweent0 and t1. For
such particles we can make the approximation thath(t) = 0 for t < t0, and similarly
h(t) = 0 for t > t1, since the power-law decay exponent increases att = t1.
The energy-flow time-response functions associated with a single charged particle
emittingČerenkov radiation then closely follow

h(t) ≈
{

Kt−3 for A < t < B
0 otherwise,

(B.221)

where we identifyA = t0 andB = t1.

Prob. 10.6.3 In media whose index of refraction differs only slightly from unity,
the power-law crossover timet1 of the impulse response functionh(t) becomes very
small, possibly smaller that the onset timet0. In that caseh(t) lacks thet−3 portion,
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and instead exhibits a faster power-law decay,

h(t) ≈
{

Kt−5 for t > t0
0 otherwise.

(B.222)

However, since the energy production is proportional toJ 4, if the index of refraction
differs only slightly from unity, thenJ assumes a small value, as does the total light
energy. In that case, the charged particles generate few photons.

Prob. 10.6.4The foregoing thus illustrates that a single particle gives rise to a photon
flux density that follows a decaying power-law time function. If a number of particles
travel along thex-axis, they stimulate noninterfering sets of photons, as long as these
particles remain sufficiently separated so that their respective electric and magnetic
fields do not overlap significantly. Since the form of the Poynting vector involves
a vector multiplication, overlap means cross-products between the two sets of fields
so that the resulting sequence of photons generated will not follow the simple linear
superposition that results from two separately arriving charged particles. Radioactive
sources, such as alpha- and beta-emitters, and particle accelerators operated at low
current levels, generate Poisson time sequences of energetic charged particles with
essentially identical positions and velocities. When these particles pass through a
transparent medium under the conditions specified above, the point process resulting
from the generateďCerenkov photon events will obey the fractal-shot-noise-driven
Poisson process model.

Prob. 10.7.1From the cluster start time, and the lack of any mechanism terminating
the clusters, we have immediatelyA = 2.3 days andB = ∞. The average number
of earthquakes per cluster is simply the area, so we also havea = 6. With a mean
of E[X] = 22 earthquakes per year, we have a rate for the primary Poisson process
given by

µ =
E[X]

a
≈ 22 yr −1

6
1 yr

365 day
≈ 0.01/day. (B.223)

It remains to findK andβ.
Postulating an impulse response functionh(t) of the form given in Eq. (9.2), the

area remaining in the tail has the form

a− ht(K, 0) ≡
∫ ∞

t

h(u) du

=
∫ ∞

t

Ku−β du

=
K

β − 1
t1−β , (B.224)

wherewe considert > A and make use of the fact thatB = ∞. We will justify
the assumption thatβ > 1 shortly. Since we know that the number of earthquakes
remaining in a cluster decays ast−1/4, we havet1−β = t−1/4 so thatβ = 5

4 , which
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is indeed larger than unity, verifying our original assumption. Evaluating Eq. (B.224)
at t = A yields the area, which we know has a value of six earthquakes per cluster,
so that

a =
K

β − 1
A1−β

6 =
K

1/4
2.3−1/4

K = 1.85. (B.225)

Prob. 10.7.2Equation (B.224) provides the average number of events remaining in
a cluster. However, an exponential transform yields the probability of zero events
remaining in the cluster, much as Eq. (10.3) does for the shot-noise-driven Poisson
process. If we set the probability of zero events remaining at 0.8 or greater, we then
have

Pr{zero events aftert} = exp
{−[

a− ht(K, 0)
]}

= exp
(
− K

β − 1
t1−β

)

= exp
[−a (t/A)1−β

]

0.8 > exp
[
−6 (t/2.3)−1/4

]

ln(0.8)/(−6) > (t/2.3)−1/4

[ln(0.8)/(−6)]−4
< t/2.3

t > 2.3 [ ln(0.8)/(−6) ]−4

t > 1 200 000 days= 3300 years, (B.226)

a surprisingly large number.

Prob. 10.8.1We defineK ≡ u0(4π∆)−DE/2 andt0 ≡ |x− x0| 2
/
4∆, and rewrite

Eq. (10.38) as

u(x, t) = K exp(−t0/t) t−DE/2. (B.227)

We further identifyA = t0 andB = t1, yielding a response to a single deposit event
that is essentially identical to that in Eq. (9.2), the only difference being in the nature
of the lower cutoff. Fractal shot noise then describes the total concentrationuΣ(x, t)
arising from the sequence of deposit events, which serves as the rate for the series of
secondary events: the result is the fractal-shot-noise-driven Poisson process.

Prob. 10.8.2 The exponentsβ = 1
2 , 1, and 3

2 , corresponding to diffusion in one,
two, and three dimensions, respectively, occur most often. In particular, the spectrum
precisely follows a1/f form for β = 1

2 ; thus, diffusion in one dimension can give
rise to a1/f -type spectrum.
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Other values ofβ also obtain if the particles remain in a fractal set. In that case,
the expression for the power-law exponent becomesβ = 1

2Ds, whereDs represents
the spectral dimension of the fractal set, defined by

Ds ≡ 2DHB/(2 + Dd), (B.228)

whereDHB is the Hausdorff–Besicovitch dimension andDd is the exponent that
describes the power-law variation of the diffusion constant with distance (Alexander
& Orbach, 1982; Rammal & Toulouse, 1983). For percolation clusters at threshold,
the spectral dimensionDs lies between1 and2, and approaches a limit of43 for an
infinite-dimensional embedding space (Rammal & Toulouse, 1983).

Prob. 10.8.3 Employing stochastic values forK readily incorporates the effect of
packets having various values of the initial concentrationu0, and using stochastic
values of bothK andA admits packets arriving at differing pointsx.

Prob. 10.8.4 Despite yielding mathematically plausible fractal exponents, the pa-
rameters associated with various diffusion processes sometimes make this process
unrealistic as a physical model. For example, the diffusion of neurotransmitter across
a synapse might appear to provide an explanation for the fractal behavior observed
in a variety of neural firing patterns (Lowen & Teich, 1990). However, synapses
typically span distances that are quite small (perhaps 5 nm), so that over millisecond
time scales the Gaussian form of Eq. (10.38) becomes a linear concentration gradient.
Moreover, neurotransmitter transport and metabolism impose a finite lifetime on the
extracellular concentration at least as short as this time scale. Thus, no plausible
mechanism exists whereby diffusion can impart power-law decay to neurotransmit-
ter concentration over time scales of seconds or longer, as would be required if this
process were to underlie fractal action-potential patterns.

Prob. 10.9.1The solution to this semiconductor recombination problem is closely re-
lated to a similar problem: molecular reactions involving two species that combine in
pairs (Burlatsky, Oshanin & Ovchinnikov, 1989; Oshanin, Burlatsky & Ovchinnikov,
1989). A cursory analysis for a diffusion process suggests that the concentration of
electrons and holes would decay in time ast−DE/2, whereDE represents the (integer)
dimension of the space within which the electrons and holes move. The concentra-
tion would indeed follow this form if the distributions of the two types of carriers
were highly correlated. However, often the two carrier distributions are independent
of each other, at least over short distances. Consider a sub-volume of the depletion
region which, as a result of the variance of the Poisson distribution, happens to have
an excess of electrons att = 0. The holes in this section readily recombine with
local electrons, but the remaining excess electrons have to diffuse out of this region
before encountering any additional holes. This requires more time, slowing the an-
nihilation process. This effect appears on all time and length scales, and results in a
concentration that decays ast−DE/4 rather thant−DE/2. If the particle concentrations
exhibit correlation over distances longer than some dependence lengthld, then the
concentration decays ast−DE/2 for timet > t1 = l2d/∆, where∆ is again a diffusion
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constant (Ovchinnikov & Zeldovich, 1978; Toussaint & Wilczek, 1983). At the cre-
ation of an electron-hole pair, there is a finite distance between the two particles, so
the concentrations of electrons and holes will remain highly correlated over regions
larger than an effective mean length.

Prob. 10.9.2 In the presence of drift, the distance traveled by a carrier along the
direction of drift changes from∼ t1/2 (diffusion alone) to∼ t1 (with drift). Since
we postulate that the electrons and holes diffuse throughDE dimensions, the total
volume encountered increases astDE/2 with diffusion alone. The inclusion of drift
changes this toDE− 1 dimensions, each varying ast1/2, and one dimension varying
ast1, for a total volume that increases ast(DE+1)/2. Since the particle concentration
decays as the inverse square-root of the volume encountered, it varies ast−(DE+1)/4

for independent electron and hole distributions, and ast−(DE+1)/2 for dependent
distributions (Kang & Redner, 1984).

Prob. 10.9.3We begin by considering the point process corresponding to the times
of the electron-hole recombinations. These recombinations cause the decay in the
number of electrons and holes, so the rate of recombination equals the rate of de-
crease in the number of particles. In the presence of drift and diffusion, the rate of
recombination takes the form

h(t) ∼




0, t < A,
t−1−(DE+1)/4 A < t < B,
t−1−(DE+1)/2 t > B,

(B.229)

where we identifyA = x2
0/∆ andB = x2

c/∆, wherex0 is a minimum separation
for created electron-hole pairs,xc is the maximum separation corresponding to a
correlation length, and∆ is a combined effective diffusion constant. Equation (9.2)
closely approximates this impulse response function, withβ = 1 + (DE + 1)/4.

Prob. 10.9.4 As indicated in the solution to Prob. 10.6.4, in many applications en-
ergetic particles impinge on the detector at discrete times corresponding to a one-
dimensional Poisson point process. In these cases, the fractal-shot-noise-driven Pois-
son process is suitable for describing the resulting recombination process.

Prob. 10.10Since the mean and variance of the numbers of conduction event onsets
assume similar values, the homogeneous Poisson process provides the simplest ex-
planation. In the absence of other evidence to the contrary, we rely on Occam’s razor
and choose this process as the point of departure. A similar argument holds for the
numbers of conductance changes within a conduction event. Together, these suggest
the Bartlett–Lewis point-process model. Since the spectrum varies as1/f , we further
narrow our purview to the fractal version described in Sec. 10.6.4. In particular, we
have1/f = 1/fα, soα = 1. Equation (10.31) yieldsα = z + 3 for −3 < z < −1,
which gives rise toz = −2, which indeed falls within the range−3 < z < −1
and validates this result. With this choice ofz, the process described in Sec. 10.6.4
successfully models the auxiliary process of conductance changes (Azhar & Gopala,
1992).

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



OPERATIONS 473

B.11 OPERATIONS

Prob. 11.1 Shuffling a point process yields a new process with completely indepen-
dent intervals; this operation therefore essentially generates a renewal point process
with the same interevent-interval distribution as the original. On the other hand, the
transformation of the interevent intervals replaces the original interevent interval dis-
tribution with a new one, exponential in this case. Since shuffling does not affect the
interevent-interval distribution, and interevent-interval transformation does not affect
the relative ordering, the two operations do not influence each other. The same result
therefore obtains regardless of which operation is carried out first. Since the resultant
point process is renewal in nature, it is completely specified by its interevent-interval
distribution (see Sec. 4.2). A renewal process with exponentially distributed inter-
vals defines the homogeneous Poisson process (see Sec. 4.1). Therefore, shuffling
and exponentialization, carried out in either order, leads to a homogeneous Poisson
process.

Prob. 11.2.1A monofractal process can comprise only a single fractal exponent; we
thus requireα1 = α2 for a true fractal-based point process.

Prob. 11.2.2 We immediately haveαR = α1 = α2 and we also haveE[µR] =
E[µ1] + E[µ2] from first principles. To determinefSR, we transform Eq. (11.41) to
the frequency domain and setM = 2 to obtain

SNR(f) = SN1(f) + SN2(f)

E[µR]
[
1 + (f/fSR)−α

]
= E[µ1]

[
1 + (f/fS1)−α

]
+ E[µ2]

[
1 + (f/fS2)−α

]

E[µR] (f/fSR)−α = E[µ1] (f/fS1)−α + E[µ2] (f/fS2)−α

fα
SR =

E[µ1] fα
S1 + E[µ2] fα

S2

E[µ1] + E[µ2]
. (B.230)

Equation (B.230) enables the calculation of the cutoff frequencyfSR.

Prob. 11.2.3 Although a true fractal-based point process can have only a single
fractal exponent, small contributions representing other exponents sometimes prove
undetectable in practice. Figure B.7 depicts the spectrum of two such fractal-based
point processes, withα2 = 2α1. Forf À fS2, we actually haveSN1(f) > SN2(f),
but since there are only small fractal fluctuations indN2(t) at these frequencies, we
can model the contribution ofdN1(t) to dNR(t) as a homogeneous Poisson point
process, which leads to what is effectively monofractal behavior indNR(t).

Prob. 11.3 Table B.1 summarizes the nine possibilities. If shuffling completely
destroys any fractal behavior in a point process, while transforming the interevent
intervals does not alter the fractal qualities, then the ordering of the intervals must
completely account for this fractal behavior. Conversely, if transforming the intervals
eliminates the fractal characteristics of a process while shuffling does not, then the

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



474 PROBLEM SOLUTIONS

dN1(t)dN2(t)

LOG FREQUENCY f
LOGSPECTR
UM

Fig. B.7 Spectrum for a superposed fractal-based point process. One of the component point
processes imparts low-intensity fractal fluctuations (dashed curve), which are masked by the
much larger contribution from the other process (solid curve).

interevent-interval
transformation

unchanged reduced eliminated

distribution distribution
unchanged impossible

dominant only

ordering both
reduced

dominant important
impossible

ordering

s
h
u
f
f
l
i
n
g eliminated

only
impossible impossible

Table B.1 Fractal behavior following shuffling and interval transformation.
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distribution of the intervals must underlie the fractal nature of the process. If both
operations decrease but do not eliminate the fractal behavior, then both effects prove
important. For a monofractal process, both effects must have the same fractal expo-
nent.

The situation is somewhat more complex when shuffling reduces the strength
of the fractal fluctuations but interval transformation leaves them unchanged. The
distribution of the intervals then contributes low-intensity fractal fluctuations, masked
by the more robust fractal characteristics imparted by the ordering of the intervals.
In this case, the two fractal contributions need not share the same fractal exponent
(we considered a related scenario in Prob. 11.2.3, where the fractal behavior from
one component dominated that of another). The converse holds when the results are
unmodified by shuffling but reduced by interval transformation.

We conclude by considering the four possibilities that cannot occur. If shuffling
completely eliminates any fractal behavior, then the interevent-interval distribution
cannot play any role; similarly, if transforming the interevent intervals results in a
nonfractal point process, then the ordering is irrelevant to the fractal characteristics
of the process. Similarly, the two operations cannot both leave the same fractal-based
point process unchanged.

Prob. 11.4 Beginning with Eq. (B.230) we have

fα
SR =

E[µ1] fα
S1 + E[µ2] fα

S2

E[µ1] + E[µ2]

fα
SR

/
Eα[µR] =

E1+α[µ1]
(
fα

S1/ Eα[µ1]
)

+ E1+α[µ2]
(
fα

S2/ Eα[µ2]
)

E1+α[µR]

cα
fR = cα

f1

(
E[µ1]
E[µR]

)1+α

+ cα
f2

(
E[µ2]
E[µR]

)1+α

. (B.231)

For cfR to exceed bothcf1 andcf2, it must exceed the larger ofcf1 andcf2. Assume
that cf1 ≥ cf2 without loss of generality. Suppose we keepE[µ1], E[µ2], andcf1

fixed. Increasingcf2 increasescfR, so to achieve the largest ratiocfR/cf1 we increase
cf2 until it equalscf1 (further increases would causecf2 to assume the role of the
larger fractal content). Settingcf1 = cf2 then leads to a simplification of Eq. (B.231):

cα
fR = cα

f1

[(
E[µ1]
E[µR]

)1+α

+
(

E[µ2]
E[µR]

)1+α
]

cfR/cf1 =
[
x1+α + (1− x)1+α

]1/α
(B.232)

x ≡ E[µ1]/E[µR], (B.233)

wherex can assume any value between zero and unity. For any value ofα, the right-
hand side of Eq. (B.232) achieves a maximum value of unity forx = 0 or x = 1, and
a minimum value of12 for x = 1

2 . We conclude thatcfR can never exceed eithercf1

or cf2, although it can approach either one for small rates of the other process.
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Prob. 11.5.1 Since we increase the rate ofdN1(t) by a factor of two, and then
keep only half of the resulting events indN2(t), the mean rate remains unchanged:
E[µR] = E[µ1]. The simple scaling operations considered do not modify the overall
fractal structure of the process, so we maintainαR = α1.

To determine the fractal onset frequency, we begin with Eq. (5.44a), and make use
of Eqs. (11.5) and (11.7), in turn, to obtain

SN1(f) = E[µ1]
[
1 + (f/fS,1)−α

]

SN2(f) = c−1E[µ1]
[
1 + (cf/fS,1)−α

]

SNR(f) = c−1E[µ1]
[
r + r2(cf/fS,1)−α

]

= E[µ1]
[
1 +

(
c1−1/α f/fS,1

)−α
]
, (B.234)

where the last step follows from the fact thatr = c since the mean rate remains
unchanged. Comparing Eq. (B.234) with Eq. (5.44a) fordNR(t), we have

E[µ1]
[
1 +

(
c1−1/α f/fS,1

)−α
]

= E[µR]
[
1 + (f/fS,R)−α

]

(
c1−1/α f/fS,1

)−α =
(
f/fS,R

)−α

c1−1/α f/fS,1 = f/fS,R

fS,R = c1/α−1 fS,1. (B.235)

In general, the fractal onset frequencies fordN1(t) anddNR(t) differ; however, for
α = 1 they coincide.

Prob. 11.5.2Independent, random deletion of a homogeneous Poisson process, case
(a1), results in another homogeneous Poisson process with reduced rate. Similarly,
deleting every other event in an integrate-and-reset process, case (b2), does not alter
the nature of the process but halves its rate. Retaining every other event in a Poisson
process, case (a2), leads to the gamma renewal process (see Prob. 4.7). And finally,
randomly and independently deleting points in an integrate-and-reset process, case
(b1), gives rise to geometrically distributed interevent intervals and binomial counts.
This latter point process finds use in auditory neurophysiology when using low-
frequency tonal stimuli, provided that measurement times are sufficiently short so
that fractal behavior does not affect the results (see, for example, Teich et al., 1993).

Prob. 11.6 Consider an event of the resulting point processdNR(t). Following
this event we have a fixed interval of durationτf , followed by an exponentially dis-
tributed random interval of mean durationτr, followed by yet another exponentially
distributed random interval of mean duration1/µ1. The next event ofdNR(t) fol-
lows immediately after this last interval. The sum of three more intervals, one fixed
and two exponentially distributed, comprises the next interevent interval, and all are
independent of their counterparts in the previous interevent interval. Their sum must
also be independent; continuing this argument we find no dependency among the in-
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terevent intervals of the output point processdNR(t), so that it belongs to the renewal
family of point processes.

The mean interevent intervalE[τ ] is the simple sum of the components associated
with the homogeneous Poisson point process and the two forms of dead time

E[τ ] = µ−1
1 + τf + τr. (B.236)

The inverse of this quantity yields the effective mean rate

E[µR] = 1/E[τ ]

=
(
µ−1

1 + τf + τr

)−1

=
µ1

1 + µ1(τf + τr)
. (B.237)

The interevent-interval variance consists of the sum of the variances associated with
the two stochastic components

Var[τ ] = µ−2
1 + τ2

r . (B.238)

Similarly, the convolution of the contributions from the three components yields
the interevent-interval probability densitypτ (t). For t ≤ τf , this assumes a value of
zero; for larger times we have

pτ (t) =





µ1(1− µ1τr)−1
[
e−µ1(t−τf ) − e−(t−τf )/τr

]
µ1τr < 1

µ2
1(t− τf ) e−µ1(t−τf ) µ1τr = 1

µ1(µ1τr − 1)−1
[
e−(t−τf )/τr − e−µ1(t−τf )

]
µ1τr > 1.

(B.239)

The product of the characteristic functions of the individual quantities yields the
characteristic function of the interevent intervalτ itself

φτ (ω) = e−iωτf (1 + iω/µ1)−1 (1 + iωτr)−1

=
µ1e

−iωτf

(µ1 + iω)(1 + iωτr)
. (B.240)

Finally, substituting Eq. (B.240) into Eq. (4.16) yields the spectrum of the point
process; forτr = 0 this reduces to

SNR(f) = E2[µR] δ(f) + E[µR] Re
[
1 + φτ (2πf)
1− φτ (2πf)

]

= E2[µR] δ(f) +
π2E[µR]f2

π2f2 + πµ1f sin(2πτff) + µ2
1 sin2(πτff)

. (B.241)

Prob. 11.7 We begin by substituting Eqs. (7.1) and (7.2) into Eq. (11.46). Making
extensive use of the relationsA ¿ t ¿ B then yields

Sϑ1(t) = E[µ1]
∫ ∞

t

(v − t) pτ1(v) dv
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≈ 1− γ

γ
A−γ Bγ−1 γAγ

∫ B

t

(v − t) v−(γ+1) dv

= (1− γ) Bγ−1

[
B1−γ − t1−γ

1− γ
− t

t−γ −B−γ

γ

]

= 1− γ−1(t/B)1−γ +
(
γ−1 − 1

)
t/B

≈ 1− γ−1 (t/B)1−γ , (B.242)

in accordance with Eq. (11.51).
We now make use of the relationt ¿ B and note that the second term in Eq. (11.51)

lies much closer to zero than unity. We then employ the approximation(1 + x)M ≈
1+Mx for smallx, which derives from the first two terms of the associated binomial
series. This yields Eq. (11.52).

Taking the derivative of Eq. (3.12) provides

pϑ(t) = Sτ (t)/E[τ ]

dpϑ(t)/dt = −pτ (t)/ E[τ ]

pτ (t) = −E[τ ] dpϑ(t)/dt

= E[τ ] d2Sϑ(t)/dt2. (B.243)

In the context of Eq. (11.52), Eqs. (B.243) and (7.2) lead to

pτR(t) = E[τ ] d2SϑR(t)/dt2

pτR(t) ≈ M−1 γ

1− γ
(A/B)γ B

d2

dt2
[
1−Mγ−1 (t/B)1−γ

]

= M−1 γ

1− γ
(A/B)γ Bγ(1− γ)Mγ−1 t−(1+γ) Bγ−1

= γAγt−(γ+1) (B.244)

as provided in Eq. (11.53); this indeed coincides with Eq. (7.1) over the rangeA ¿
t ¿ B.

Repeating this procedure forγ > 1 yields different results. Substituting Eqs. (7.1)
and (7.2) for this range ofγ into Eq. (11.46) yields

Sϑ1(t) = E[µ1]
∫ ∞

t

(v − t) pτ1(v) dv

≈ (1− 1/γ)A−1

∫ ∞

t

(v − t)γAγ v−(γ+1) dv

= (γ − 1)Aγ−1

∫ ∞

1

t(x− 1)t−γx−(γ+1) dx

= (γ − 1)Aγ−1 t1−γ

∫ ∞

1

[
x−γ − x−(γ+1)

]
dx
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= (γ − 1)Aγ−1 t1−γ

(
1

γ − 1
− 1

γ

)

= γ−1(t/A)1−γ , (B.245)

where we again make use of the inequalitiesA ¿ t ¿ B, and substitutex ≡ v/t.
This gives Eq. (11.54). Proceeding, we obtain

SϑR(t) =
[
Sϑ1(t)

]M

=
[
γ−1(t/A)1−γ

]M

= γ−M (t/A)M(1−γ), (B.246)

in accordance with Eq. (11.55). We note that in this regime ofγ, the binomial expan-
sion does not apply, but rather a power-law form with a changed exponent emerges.
Finally, substituting Eq. (B.246) into Eq. (B.243), and employing the shorthand no-
tationc ≡ 1 + M(γ − 1), yields Eq. (11.56):

pτR(t) = E[τR] d2SϑR(t)/dt2

= M−1γ(γ − 1)−1A
d2

dt2
[
γ−M (t/A)1−c

]

= M−1γ1−M (γ − 1)−1Ac d2

dt2
t1−c

= M−1γ1−M (γ − 1)−1Ac(c− 1) ct−(c+1)

= c γ1−MAc t−(c+1). (B.247)

Prob. 11.8.1 Figure B.8 presents the resulting spectrumSNR(f). The block shuf-
fling operation destroys correlations at times significantly smaller than the block size
T = 100/fS . This effectively reduces the spectrum to the high-frequency limit for fre-
quencies much larger than the inverse of the block size; we then haveSNR(f) ≈ E[µ]
for f À 1/T = fS/100. However, correlations at times much larger thanT remain
essentially unchanged, so thatSNR(f) ≈ SN1(f) for f ¿ 1/T . In the transition
regionf ≈ 1/T , the abrupt cutoff of the blocks leads to oscillations in the frequency
domain. More precisely, the Fourier transform of a rectangular block of duration1/T
yields a sinc(·) functionsin(πfT )/(πfT ); its square modulates the spectrum. The
overall form, verified by simulation, then becomes

SNR(f) ≈ E[µ]

{
1 +

[
sin(πfT )

πfT

]2

(f/fS)−α

}
. (B.248)

Prob. 11.8.2 Figure B.9 presents the resulting spectrumSNR(f). As with block
shuffling, the displacement operation destroys correlations at times significantly
smaller than the block sizeT = 100/fS , so we again haveSNR(f) ≈ E[µ] for
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f0f0=100
Fig. B.8 Spectrum for a fractal-rate point processdN1(t) that follows the form of Eq. (5.44a)
(solid curve). Block shuffling with a block sizeT = 100/fS yields a point processdNR(t)
with a spectrum reduced at frequencies above1/T , as provided in Eq. (B.248) (dashed curve).

f À 1/T = fS/100. Also, as before, the slow components remain unchanged so
thatSNR(f) ≈ SN1(f) for f ¿ 1/T . The transition region exhibits different behav-
ior from that engendered by block shuffling. Focusing on the rate, the displacement
closely resembles a noncausal filter of unit area, centered ont = 0, with a Gaus-
sian shape and a standard deviationσ given by100/fS in this case.3 In the spirit of
Eq. (9.35), we then have

h(t) =
1√
2π σ

exp
(
− t2

2σ2

)

H(2πf) =
∫ ∞

−∞

1√
2π σ

exp
(
− t2

2σ2

)
exp(−i2πft) dt

=
1√
π

∫ ∞

−∞
exp

[
−

(
t√
2 σ

+
i2πσf√

2

)2
]

× exp

[
− (2πσf)2

2

]
dt√
2 σ

3 We absorb the factorE[τ ] intoσ to simplify the notation instead of presenting it explicitly, as in Eq. (11.38).
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f0f0=100
Fig. B.9 Spectrum for a fractal-rate point processdN1(t) that follows the form of Eq. (5.44a)
(solid curve). Event-time displacement with a standard deviation ofT = 100/fS yields a point
processdNR(t) with a spectrum reduced at frequencies above1/T , as provided in Eq. (B.250)
(dashed curve).

= exp

[
− (2πσf)2

2

]
1√
π

∫ ∞

−∞
exp

(−u2
)
du

= exp

[
− (2πσf)2

2

]

∣∣H(2πf)
∣∣ 2 = exp

[
− (2πσf)2

]
. (B.249)

The overall form, verified by simulation, then becomes

SNR(f) ≈ E[µ]
{

1 + exp
[− (2πσf)2

]
(f/fS)−α

}
. (B.250)

Prob. 11.9.1The original processdN1(t) has independent intervals. Since we pos-
tulate an independent deletion operation, the interval following an event that survives
the deletion remains independent of previous intervals. This defines a renewal point
process.

Prob. 11.9.2 We condition on the number of deleted events between each adjacent
surviving pair of events indNR(t). Given no deletion, we have a probability density
pτ1(t); this happens with probabilityr. For one deletion, we havepτ1 ?pτ1(t), where
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? represents the convolution operation, and we expect this to occur with probability
r(1− r). Summing over all possibilities, we have

pτR(t) = rpτ1(t) + r(1− r)p?2
τ1(t) + r(1− r)2 p?3

τ1(t) . . .

= r
∞∑

n=1

(1− r)n−1p?n
τ1(t), (B.251)

wherep?n
τ1(t) denotes then-fold convolution ofpτ1(t) with itself.

Prob. 11.9.3 Taking the Fourier transform of Eq. (B.251) yields a related equation
for the characteristic function

φτR(ω) = r
∞∑

n=1

(1− r)n−1φn
τ1(ω)

=
rφτ1(ω)

1− (1− r) φτ1(ω)
. (B.252)

For the specific case of a fractal renewal point process with0 < γ < 1, Eq. (7.4)
yields

1− φτR(ω) = 1− rφτ1(ω)
1− (1− r) φτ1(ω)

=
1− φτ1(ω)

(1− r) [1− φτ1(ω)] + r

≈ Γ(1− γ) (iωA)γ

(1− r) Γ(1− γ) (iωA)γ + r

≈ r−1Γ(1− γ) (iωA)γ , (B.253)

where the last line results from the conditionω ¿ A−1. Equation (B.253) differs from
Eq. (7.4) only by a factorr−1; thus, over the rangeB−1 ¿ ω ¿ A−1, corresponding
to A ¿ t ¿ B, the randomly deleted process resembles the original process withA
replaced byr−1/γA.

For γ ≥ 1, the results provided in Eq. (B.253) are not valid, and in fact the
probability densitiesp?n

τ1(t) assume different shapes for different values ofn. This
leads to a processdNR(t) that does not have well-defined scaling regions: the process
is, in general, nonfractal, except forr ≈ 0 in which casedNR(t) ≈ dN1(t). The
change in behavior atγ = 1 parallels the results presented at the end of Sec. 11.6.2
for the superposition of fractal renewal processes.

Prob. 11.10.1 Figure B.10a) is a simulation for various values of the dead-time
parameterµ1τe. The mean of the initial Poisson counting distribution (µ1τe = 0)
is µ1T = 15. Increasing the dead time results in a decrease of both the mean
and variance. The count mean decreases with dead time according toE[µR]T =
µ1T/(1 + µ1τe), while the variance decreases more rapidly by virtue of the cube in
the denominator ofVar[n] ≈ µ1T/(1 + µ1τe)3.
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�1T = 15
) GRP

50403020100
0.30.20.10 E[�R℄T = 15d) GRP

50403020100NUMBER OF COUNTS n�1�e = 0m = 1 0.20.5 0.51.5 1.02.0
Fig. B.10 (a) Simulated dead-time-modified Poisson (DTMP) counting distributions with
µ1T = 15 and different dead-time parameters:µ1τe = 0 (solid curve, Poisson distribution),
0.2 (long-dash curve), 0.5 (short-dash curve), and 1.0 (dotted curve). The count mean and
variance both decrease as the dead-time parameter increases, but at different rates. (b) Same as
a) but withµ1T adjusted to compensate for the dead-time loss such that all dead-time modified
counting distributions have the same final mean,E[µR] T = 15. The counting distributions
become narrower as the dead time increases. (c) Simulated gamma-renewal-process (GRP)
counting distributions withm = 1 (solid curve, Poisson distribution), 0.5 (long-dash curve),
1.5 (short-dash curve), and 2.0 (dotted curve). The counting distribution is broader than the
Poisson form < 1 and narrower form > 1. (d) Same as c) but withµ1T adjusted to
compensate for the decimation so that all counting distributions have the same final mean,
E[µR] T = 15. All distributions are simulated using108 intervals. Adapted from Fig. 3 of
Teich & Vannucci (1978) and Fig. 14 of Teich et al. (1984).

Prob. 11.10.2We illustrate dead-time-modified Poisson counting distributions with
a final meanE[µR]T = 15 in Fig. B.10b). The relative width clearly narrows as the
dead-time parameter becomes larger, as a consequence of the increasing regularity of
the event occurrences.
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Prob. 11.10.3Given that the two processes have the same initial mean rate, dead time
is more effective in decreasing the mean and variance for the fractal-rate process.
This occurs because the increased event clustering engendered by the rate modulation
causes more events to be lost in each dead-time period.

Prob. 11.10.4 We present simulated counting distributions for the gamma renewal
process in Fig. B.10c) for various values of the order parameterm. Again, the mean
of the initial Poisson counting distribution (m= 1) isµ1T = 15. Increasing the order
parameter yields a decrease in both the count mean and variance. An order parameter
that is less than unity results in an increase of both the mean and variance. The
count mean varies with the order parameter in accordance withE[µR] T = µ1T/m
while the variance changes more rapidly by virtue of the square in the denominator
of Var[n] ≈ µ1T/m2.

Prob. 11.10.5Simulated decimated-Poisson counting distributions with a final mean
E[µR] T = 15 appear in Fig. B.10d). The relative width clearly narrows asm
becomes larger, corresponding to the increasing regularity of the event occurrences.
Values ofm < 1 yield distributions broader than the Poisson by virtue of the increased
clustering in the process.

Prob. 11.11 Although fractal fluctuations are present in the original point process,
the small value of the coefficient of variation (Cτ1

.= 0.176) dictates that even large
variations in the rate result in rather modest changes in the numbers of counts. Since
exponentialization imparts a coefficient of variation of unity to the process, it effec-
tively amplifies the fractal character of the resulting process by the ratio of the interval
variances, namely(CτR

/
Cτ1)2 = (1

/
Cτ1)2

.= 32.2.

Prob. 11.12.1Little information can be drawn from Fig. 11.16 since: (1) the shuffled
surrogate, by construction, yields a curve identical to that for the original data; and
(2) the exponentialized surrogate, by construction, yields an exponential interevent-
interval histogram. Knowledge of the estimated interevent-interval histogram alone
is thus of little help in identifying the underlying point process.

Prob. 11.12.2 All three curves in Fig. 11.17 differ. The power-law growth of the
normalized Haar-wavelet variance for the original data, with increasing counting
time, signals the likely presence of fractal behavior of some form in the point process.
The exponentialized version of the data has similar fractal content although itappears
to have an increased fractal onset time and a wavelet variance that is slightly reduced
in magnitude. Taken together, these observations might suggest that we can ascribe
at least a portion of the fractal behavior to the ordering of the intervals.

The normalized Haar-wavelet variance for the shuffled data increases a bit and then
saturates at a value of̂A(T ) ≈ 2 [the results are similar to those for the cat striate
cortex cell displayed in Fig. 11.14 and discussed by Teich et al. (1996, Fig. 2); this
cell also has a quite low firing rate]. Behavior of this kind can arise from a nonfractal
renewal process model such as the gamma (see Prob. 4.7 in the range0 ≤ m ≤ 1) or
by a nonfractal cluster point process with slight clustering (see Sec. 4.5). So in view
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of the behavior of the shuffled data, it appears that very little, if any, of the fractal
behavior in the original point process does derive from the form of the underlying
interevent-interval density.

The apparent reduction of the fractal content of the exponentialized data is there-
fore simply a manifestation of removing the (essentially nonfractal) features of the
interevent-interval density inherent in the original data. Since shuffling completely
destroys the fractal behavior whereas exponentialization does not change the fractal
qualities for this data set, we conclude that the ordering of the intervals is solely
responsible for the fractal behavior.

These observations reinforce earlier caveats about attempting to infer the nature
of a fractal-based point process from a single measure. Indeed, neural spike trains
recorded from many loci, in many preparations, exhibit power-law interevent intervals
similar to those seen in the solid curve of Fig. 11.16 (see, for example, Gerstein &
Mandelbrot, 1964; Wise, 1981). Such data are often coopted to conclude that fractal
renewal processes provide useful models for these action-potential sequences, but the
interneuron example at hand makes it clear that drawing such conclusions requires
caution.

Prob. 11.12.3 Adding the two curves results in something quite close to the curve
for the original data. Indeed, for short counting times the correspondence is almost
exact. This indicates that the surrogate data sets perform as designed; namely, they
separate out two aspects of point-process behavior: fluctuations associated with the
interval distribution and fluctuations associated with the interval ordering.

Prob. 11.12.4It is not straightforward to make a definitive choice based on the lim-
ited number of measures studied. Considering the underlying neurophysiology of the
preparation provides guidance in setting forth the options. A neurophysiologically
plausible point process that generates sample functions that accord with the data is a
nonfractal cluster process driven by fractal-rate fluctuations (Teich et al., 1997). A
natural choice for the fractal-rate fluctuations is fractal binomial noise (Thurner et al.,
1997), which, as discussed in Sec. 8.4, converges to the fractal Gaussian process.
An alternative choice is a gamma-based fractal doubly stochastic Poisson process,
such as the fractal-binomial-noise-driven gamma process mentioned in Sec. 8.4; how-
ever, this model is less appealing from a neurophysiological perspective (Teich et al.,
1997). The behavior of the shuffled version of the data in Fig. 11.17 supports either
interpretation.A priori information clearly plays an important role in point-process
identification.

Prob. 11.12.5The generalized-dimension scaling functions presented in Fig. 11.18
reveal that theinterneuron action-potential sequence is not a fractal point process.
Given its fractal characteristics, it must belong to the family of fractal-rate point
processes (see Sec. 3.5.4 and Prob. 5.5). This accords with the supposition set forth
in Prob. 11.12.4.
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B.12 ANALYSIS AND ESTIMATION

Prob. 12.1 We can understand the forms of the interevent-interval densities that
characterize these processes by viewing them as modulated versions of the basic ex-
ponential form provided in Eq. (4.3), which, of course, applies exactly for a Poisson
process driven by a fixed, deterministic rate (yielding the homogeneous Poisson pro-
cess in that case). Modulating the rate in effect modulates the mean value of the
exponential density. If the rate modulation is slow in comparison with the mean rate
of events, and is sufficiently weak so that its coefficient of variation obeysCµ ¿ 1,
then the interval density remains essentially exponential, as provided in Eq. (4.33).
However, for larger values ofCµ, perceptible broadening of the interval density can
occur via Eq. (4.32). Since, by assumption, rate processes (2) and (3) do not dif-
fer substantially from rate process (1), the overall forms of the interevent-interval
densities for all three processes should not differ greatly from each other.

In fact, distinguishing among these three processes proves nearly impossible with-
out recourse to an extraordinarily long record. In Fig. 10.6 for the fractal-shot-
noise-driven Poisson process, for example, the interevent-interval density forβ = 1

2 ,
correspondingto α = 1, deviates from the equivalent result for the fractal-Gaussian-
process-driven Poisson process (not shown) only for about one interval in108 [we
do not consider the other two curves displayed in Fig. 10.6 since they do not yield
spectra that follow the form of Eq. (5.44a)]. An exception to this general similarity
occurs for shot-noise rates with largeK and smallA. The shot-noise rate then takes
on relatively large values immediately following the onset of each impulse response
function. This local augmentation of the rate, in turn, can lead to a significant increase
in the proportion of small intervals, while leaving the remainder of the interval density
essentially intact.4 The results in Fig. 10.6 correspond to relatively small values of
K, so that no such increase for small interevent intervals is apparent.

The nature of the rate process is far more accessible if the kernel has an integrate-
and-reset form. In this case, a rate comprising fractal binomial noise generates a
piecewise-periodic point process between transition times of the component alternat-
ing fractal renewal processes, if significant numbers of events occur between these
transitions. A histogram of the interevent intervals would readily reveal this fea-
ture, thereby distinguishing a fractal-binomial-noise-driven integrate-and-reset pro-
cess from its shot-noise and Gaussian-process brethren. Although histograms of
the interevent intervals for these two latter processes may resemble each other, the
point process deriving from fractal shot noise will exhibit steadily increasing inter-
vals except at the onset times of the impulse response functions. The result for the
fractal Gaussian process, in contrast, will exhibit as many increases as decreases and
therefore lack this asymmetry.5

4 Examples of this appear in Lowen et al. (2001, Figs. 3B and 4B on pp. 385 and 387, respectively)
for fractal-rate visual-system action potentials. For nonfractal cathodoluminescence photon emissions,
examples appear in Saleh & Teich (1982, Figs. 10 and 14 on pp. 236 and 239, respectively).
5 Examples of the latter case, for the human-heartbeat point process, appear in Turcott & Teich (1993,
Fig. 3 on p. 26) and in Turcott & Teich (1996, Fig. 3 on p. 278).
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Prob. 12.2 Given additionala priori information about a process, we can fit in-
creasingly more explicit and accurate functional forms to the various estimators we
employ, such as the periodogram or the estimated normalized Haar-wavelet variance.
If, for example, we knew that we had a fractal renewal process at hand, with an
interevent-interval density given by Eq. (7.1) and1 ≤ γ ≤ 2, we could fit a suitable
functional form to the periodogram or even use maximum-likelihood methods. We
would know to expect oscillations in the periodogram resulting from the abrupt cutoff
in the probability density, among other features (see Fig. 7.2). But this increase in
accuracy comes at the expense of robustness. Such specificity would prove disastrous
were we to encounter instead a point process that differs greatly from the prescribed
form. A fractal-shot-noise-driven Poisson process, for example, has a periodogram
with significantly different detailed structure (see Fig. 10.8), and the fractal renewal
assumptions would lead to spurious estimates ofα. Indeed, we already encountered
just such a conundrum in examining the action-potential statistics generated by an
insect visual-system interneuron (see Probs. 7.8 and 11.12).

Prob. 12.3 Computing the correlation coefficient between the absolute values in
columns three and four of Table 12.1 yieldsρ = −0.620, which is less than zero and
therefore does indeed indicate a bias/variance tradeoff. However, carrying out this
calculation using the entries in columns six and seven yieldsρ = +0.954, in apparent
contradiction to the bias/variance tradeoff hypothesis. Why might this arise?

Examining the entries in the latter two columns reveals that a positive bias appears
only for the shortest time scales; on the other hand, the largest negative bias occurs
at the largest time scales. The decrease in the magnitude of the bias as the time range
increases results from a partial cancelation of the positive and negative bias values.
The decreased standard deviation results from the larger numbers of normalized Haar-
wavelet variance values over which we calculate the fractal-exponent estimate. Since
these two sources of error vary together, we expect a positive correlation coefficient.
In this case, we have substantially eliminated the bias by subtracting unity from the
normalized Haar-wavelet variance so that we can fully utilize the entire range of time
scales. The bias/variance tradeoff therefore does not apply.

Let us examine the variation in the bias a bit more carefully. Since the magnitude
of the bias in column six lies well below the standard deviation in column seven, we
might be tempted to attribute the entries in column six to random fluctuations about
a true bias of zero; indeed, this would generate a positive correlation coefficient.
However, this is not a likely explanation for the large positive value ofρ. The standard
error (the standard deviation of the mean estimate) equals the standard deviation
divided by the square root of the number of simulations; the bias exceeds this value
in all cases, and in fact it exceeds it by a factor of 2.3 in most of the cases. This
explanation might still have merit were the distribution of the estimated values ofα
to deviate significantly from Gaussian form, but, in fact, estimates of the skewness
and kurtosis (not shown) confirm a Gaussian distribution. Hence, it is not likely that
random Gaussian fluctuations about a true bias of zero provides an explanation for the
values of the bias displayed in column six. Other, subtle effects offer a more cogent
explanation, as discussed in Sec. 12.2.3.
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Prob. 12.4 Given a finite data set, we find an estimate of the coincidence rate by
assembling a list of all possible pairs of events (regardless of the presence or absence
of intervening events), and note the delay times between each pair. We can say that
a coincidence has occurred at each of these delay times, but we have no information
about other delay times that might also represent coincidences; only those delay
times that happened to occur in our data appear in the final result. Because of the
sparseness of this statistics, the delay times almost surely do not include any particular
time we choosea priori, and so we estimateG(t) = 0 for any delay time specified
before collecting the data. To make use of this statistic we must average over time
windows. Although other averaging methods exist, a rectangular filter of unit height
and constant durationT seems most convenient. Applying this filter to a point process
yields the sequence of countsZ(k, T ), and the filtered coincidence rate then becomes
the count-based autocorrelationRZ(k, T ). Section 12.3.1 addresses this issue.

This problem does not afflict the point-process spectrum. We can readily carry
out the Fourier transform of the point process, take the absolute magnitude, square it,
and divide by the duration of the data set to estimate it, as indicated in Sec. 3.5.2:

Ñ(f) ≡
∫ L

0

e−i2πft dN(t)

=
∫ L

0

e−i2πft
∑

k

δ(t− tk) dt

=
∑

k

e−i2πftk

∣∣Ñ(f)
∣∣ 2 =

∣∣∣∣∣
∑

k

e−i2πftk

∣∣∣∣∣

2

ŜN (f) =
1
L

∣∣∣∣∣
∑

k

e−i2πftk

∣∣∣∣∣

2

. (B.254)

Equation (B.254) does indeed provide an accurate estimate of the point-process spec-
trum, without the bias inherent in using the rate-based periodogram [see Eq. (3.67)].
However, as noted in Sec. 3.5.2, the estimate set forth in Eq. (B.254) suffers from a
major drawback: the times{tk} span a continuous range of values, which precludes
use of the fast Fourier transform algorithm. For a large data set this method can take
several orders of magnitude longer to compute than the rate-based periodogram, with
little advantage in accuracy. We therefore generally compute the rate spectrum (see
Sec. 12.3.9).

Prob. 12.5.1From Eq. (12.6) we have

F (T ) ≈ (T/TF )α
[
1− (T/L)1−α

]

= T−α
F Tα − T−α

F Lα−1 T

dF (T )
dT

= αT−α
F Tα−1 − T−α

F Lα−1 = 0
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0 = α Tα−1 − Lα−1

T = α1/(1−α) L, (B.255)

which is independent of the fractal onset timeTF .

Prob. 12.5.2For convenience, we employ the same simulation as that used through-
out Chapter 12 (see Sec. 12.2.3), effectively extending Fig. 12.2 to larger count-
ing times. Since estimating a variance requires at least two values, we must have
M ≡ int(L/T ) ≥ 2, which, in turn, implies thatT ≤ L/2. To highlight the differ-
ences between the predictions provided by Eqs. (5.44b) and (12.6), we present the
results in the form of a doubly linear plot. As shown in Fig. B.11, the simulations lie
far from Eq. (5.44b). Although they roughly follow the form of Eq. (12.6), they con-
sistently lie above this prediction, suggesting that Eq. (12.6) slightly overestimates
the bias.

THEORY, CHAP. 12THEORY, CHAP. 5SIMULATIONNORMALIZED VARIANCE

COUNTING TIME T
NVb F(T)AND
F(T)

40003000200010000

2000150010005000
Fig. B.11 Two theoretical results for the normalized varianceF (T ) vs. counting timeT ,
along with an estimate of this quantity,̂F (T ), based on the same simulations as used to
generate Figs. 12.1–12.7 and 12.9. We present the mean± standard deviation of the simulated
results (short horizontal lines± error brackets), as well as the predicted theoretical curves from
Chapter 5 [Eq. (5.44b), dashed curve] and from Chapter 12 [Eq. (12.6), dotted curve]. The
simulations closely follow the latter result, but they consistently lie just above it.

Prob. 12.6 Our principal concern has heretofore been the accurate estimation of the
fractal exponentα from the periodogram (spectrum estimate), rather than the estima-
tion of the spectrum itself. Averaging adjacent computed values of the periodogram
does indeed lead to spectral estimates with reduced variance. However, this comes at

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



490 PROBLEM SOLUTIONS

the cost of fewer spectral values so that the net variance does not change. But, since
the averaged values derive from different frequencies, which have different expected
values, the averaging process introduces bias. Although this bias is small at high
frequencies, where adjacent values differ by small relative amounts, the averaging
procedure strongly affects the results at low frequencies where the spectrum changes
quickly with frequency. Since the averaging process introduces bias without reducing
the variance, we decline to make use of it.

A similar argument applies for block averaging of the periodogram. Fourier trans-
forming a block yields fewer values than does transforming the entire data record.
Although the averaging then occurs across transforms at identical frequencies, which
eliminates the bias problem, the division of the data into blocks precludes estimating
components at frequencies that lie below the inverse of the block duration. Averaging
again results in fewer values with proportionately reduced variance, but it destroys
important information at the longest time scales. With the net variance unchanged,
and a portion of the spectrum rendered unavailable, this method does not prove help-
ful in fractal-exponent estimation. Indeed, as a general rule, parametric-estimation
practice eschews smoothing of any kind before parameter estimation.

Prob. 12.7We focus on the spectrum, as estimated by the periodogram, although the
following argument applies to any measure with an asymptote. A real data set has
finite length so that the periodogram constructed from it exhibits random fluctuations.
These fluctuations, an inherent part of constructing the estimator, depend on all fea-
tures of the spectrum at any given frequency, not only on the fractal component. The
fluctuations can thus remain significant even when the fractal component becomes
small. In particular, near the high-frequency

/
short-time limit, the contribution from

fluctuations can readily exceed that from the fractal component. Subtracting the
asymptote from the estimated value might then give rise to a negative value for the
adjusted periodogram at that frequency; computation of the logarithm then cannot
proceed without a modification such as that used in Sec. 12.3.9. Even so, at high
frequencies little usable information pertaining to the fractal content of the spectrum
resides in its estimate.

Another potential problem with subtracting the high-frequency
/

short-time limit
arises in connection with the intrinsic nature of certain types of point processes. Even
without random effects in the periodogram, point processes often have intermediate-
frequency effects (such as dead time) that cause the spectrum, over some range of
frequencies, to lie below the high-frequency limit (see Fig. 5.1, particularly the curve
labeledheartbeat). Subtracting the high-frequency asymptote then leads to neg-
ative values in the periodogram, and thence to the absence of usable information
over that range. The averaging methods employed in Sec. 12.3.9 do not render these
spectral values useful, since they lie well below the high-frequency asymptote for an
extended range of frequencies. The simulations used to generate Tables 12.1–12.10
had no dead time or other intermediate-frequency effects, by construction, so that this
issue did not arise. We reiterate our caution in employinga priori information such
as this when estimating an unknown process.
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This issue also arises in connection with the normalized Haar-wavelet variance, as
shown in Fig. 5.2 (see also Fig. 7.5 and Fig. B.13 in Prob. 12.8).

Prob. 12.8Figures B.12 and B.13 present results for the periodogram (rate spectrum
estimate) and normalized Haar-wavelet variance estimate, respectively, for the sim-
ulated fractal renewal process (FRP) and homogeneous Poisson process (HPP). For
the fractal renewal point process, both of these count-based measures clearly reveal
power-law variation over a large range of frequency and time, indicating fractal be-
havior. For the homogeneous Poisson process, both show no significant variation with
frequency and time, indicating a nonfractal process. For both processes, therefore,
the two measures reliably describe the presence or absence of fractal characteristics
in the point process under study.

The dip in the normalized Haar-wavelet variance that occurs for the fractal renewal
process in Fig. B.13 arises from the abrupt cutoff of small intervals in the interevent-
interval density. This cutoff is equivalent to dead time in the underlying point process
(Fig. 5.2 reveals how widespread behavior of this kind is for real data). The presence of
this dip vividly illustrates one of the difficulties associated with subtracting asymptotic

HPPFRP

FREQUENCY fESTIMATED
SPECTRUM
b S �(f;T)

10�210�310�410�510�6

10310210110010�1
Fig. B.12 Estimated spectrum (periodogram)̂Sλ(f, T ) vs. frequencyf for a simulated
fractal renewal process (FRP, solid curve) and a homogeneous Poisson process (HPP, dashed
curve) with the same mean rate,E[µ] = E[τ ] = 1. The counting timeT = L/216 .

= 15.2588.
Parameters used in simulating the fractal renewal process are as follows:γ = 3

2
(α = 1

2
),

B/A = 106, A = 1.001001/3 = 0.333667, B = 0.333667 × 106, andL = 106. The
spectrum reliably reports the presence of power-law behavior in the fractal process and its
absence in the nonfractal process. Calculated point-process spectra for the fractal renewal
process appear in Fig. 7.2.
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HPPFRP

COUNTING TIME TESTIMATED
NHWVb A(T)

10410210010�2
102101100

Fig. B.13 Estimated normalized Haar-wavelet variance,Â(T ) vs. counting timeT , for a
fractal renewal point process (FRP, solid curve) and a homogeneous Poisson process (HPP,
dashed curve) with the same mean rate of unity,E[µ] = E[τ ] = 1. The caption of Fig. B.12
provides parameters for the fractal renewal process. Along with the results shown in Fig. B.12,
this measure reliably reports power-law behavior in the fractal process and its absence in the
nonfractal process. The dip in the curve for the fractal renewal process derives from the abrupt
cutoff in the interevent-interval density for small intervals. A simulated version ofA(T ) for
γ = 1

2
, which also yieldsα = 1

2
, appears in Fig. 7.5.

values in an attempt to improve fractal-exponent estimation, as discussed in Prob. 12.7.
In the case at hand, the asymptote is unity; the decrease ofÂ(T ) below unity therefore
renders the adjusted normalized Haar-wavelet variance negative, an impossibility.

Figure B.14 shows the corresponding results for the estimated normalized rescaled
range statistic,̂U2(k) = Û2(k)/k. This measure should lie near unity for a nonfractal
process, which indeed it does for the homogeneous Poisson process. However, it
exhibits similar behavior for the fractal renewal process. Indeed, the two curves
differ by less than a factor of 1.3 over the entire range examined, which spans five
decades. This result confirms that this interval-based measure fails to reveal fractal
behavior in the fractal renewal process.
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HPPFRP
NUMBER OF INTERVALS kESTIMATED

NRSb U 2(k)
105104103102101

1
Fig. B.14 Normalized rescaled range estimateÛ2(k) = Û2(k)/k vs. number of intervalsk,
for a fractal renewal point process (FRP, solid curve) and a homogeneous Poisson process (HPP,
dashed curve) with the same mean rate of unity,E[µ] = E[τ ] = 1. The caption of Fig. B.12
provides parameters for the fractal renewal process. In contrast to the results demonstrated in
Figs. B.12 and B.13, this measure fails to detect scaling behavior in the fractal process.
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B.13 COMPUTER NETWORK TRAFFIC

Prob. 13.1 For both Eqs. (13.1) and (13.2) we simply setQm →∞. This leads to

dp (n, t)
dt

=

{ −µa p (n, t) + µs p (n + 1, t) n = 0

−(µa + µs) p (n, t)+ µa p (n− 1, t)+ µs p (n + 1, t) n > 0
(B.256)

and
p∞(n, t) → (1− ρµ) ρn

µ, (B.257)

as in Eq. (13.4).

Prob. 13.2We wish to accommodateM servers, all handling requests from the same
buffer. For large values of the queue lengthn, where allM servers are effective in
decreasing it, we replace the service rateµs with Mµs. For smaller values of the
buffer occupancyn, where not all servers can work at the same time, the service rate
increases by a factor of onlyn, rather thanM . The effective service rate therefore
becomesmin(n,M)µs, where the functionmin(· , ·) returns the smaller of its two
arguments. We must thus institute the following modifications in Eq. (13.1):

+µs p (n + 1, t) → +min(n + 1,M) µs p (n + 1, t)

−µs p (n, t) → −min(n,M)µs p (n, t).
(B.258)

Prob. 13.3 We obtain the queue-length distributionp∞(n) directly from Eq. (13.4).
From this we immediately write the four possibilities:

pa ≡ p∞(Qm) = (1− ρµ) ρQm
µ

pb ≡ p∞(Qm + 1) = (1− ρµ) ρQm+1
µ

pc ≡
∞∑

n=Qm

p∞(n) =
∞∑

n=Qm

(1− ρµ) ρn
µ = ρQm

µ

pd ≡
∞∑

n=Qm+1

p∞(n) = ρQm+1
µ .

(B.259)

To determine which of these lies closest to the true resultpQ(Qm), we divide each by
pQ(Qm), as provided in Eq. (13.8). We then compare results, considering the limit
Qm →∞:

pa/pQ(Qm) =
(
1− ρQm+1

µ

) → 1

pb/pQ(Qm) = ρµ

(
1− ρQm+1

µ

) → ρµ

pc/pQ(Qm) = (1− ρµ)−1
(
1− ρQm+1

µ

) → (1− ρµ)−1

pd/pQ(Qm) = ρµ(1− ρµ)−1
(
1− ρQm+1

µ

) → ρµ(1− ρµ)−1.

(B.260)
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We conclude thatpa ≡ p∞(Qm) provides the closest approximation topQ(Qm).

Prob. 13.4A mean interevent interval of 10 msec and a mean service time of 9 msec
together yield a service ratioρµ = 0.9. Since both the arrival and service processes
follow a homogeneous-Poisson form, and a single server handles the requests, we
can make use of the results obtained for the M/M/1/Qm queue. Inverting Eq. (13.9)
yields

Qm = − log
(

ρµ +
1− ρµ

PB

)/
log(ρµ). (B.261)

Substituting the valuesPB = 10−3, 10−6, and10−9 into Eq. (B.261), and rounding
up to the nearest integer, yields buffer sizes of 44, 110, and 175, respectively.

Prob. 13.5We simulate this M/M/1 queue, effectively using two homogeneous Pois-
son processes. Since both the arrival and service processes lack memory, we can note
the queue length after each event (arrival or departure from the queue), and base our
results on that statistic. Alternatively, we can sample the queue at all times equal to
integer multiples of a sampling time. Decreasing this sampling time provides bet-
ter resolution. Indeed, we can effectively achieve an infinitesimal sampling time by
recording the durations between events, which yields the proportion of the total time
spent at each queue length. We use this approach in this simulation and in the ones
following.

THEORYSIMULATIONM/M/1 QUEUE WITH �� = 0:9

QUEUE LENGTH nQUEUE-LEN
GTHHISTOG
RAMbp Q(n)

120100806040200
10�210�410�610�8

Fig. B.15 Simulated queue-length histogram for the M/M/1 queue withρµ = 0.9 (solid
curve), and the geometric-distribution theoretical fit provided by Eq. (13.4) (dashed curve).

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



496 PROBLEM SOLUTIONS

Figure B.15 presents the simulated queue-length histogram (solid curve), along
with the theoretical result (dashed curve)

p∞(n) = (1− ρµ) ρn
µ, (B.262)

which is the geometric distribution reported in Eq. (13.4). The simulation agrees well
with the theory.

In Prob. 13.4 we used analytical formulas for the M/M/1/Qm queue to determine
that buffer sizes of 44 and 110 correspond to overflow probabilities of10−3 and
10−6, respectively. The queue-length distribution for the M/M/1/∞queue plotted in
Fig. B.15 reveals thatp∞(44) ≈ 10−3 andp∞(110) ≈ 10−6, thereby confirming the
validity of Eq. (13.12) for sufficiently large values ofQm: PB ≈ p∞(Qm).

M/M/1 THEORYPARETO FITSIMULATIONFGPDP/M/1 QUEUE WITH �� = 0:9

QUEUE LENGTH nQUEUE-LEN
GTHHISTOG
RAMbp Q(n)

104103102101100
10�110�210�310�410�510�6

Fig. B.16 Simulated queue-length histogrampQ(n) for the FGPDP/M/1 queue (solid curve).
Arrivals at the queue are described by a fractal-Gaussian-process-driven Poisson process
(FGPDP) simulated using the following parameters:E[µ] = 100, duration L = 106,
fractal exponentα = 0.8, onset frequencyfS = 0.2, and fractal-Gaussian-process ar-
ray sizeM = 224. With an expected service time of0.009, this yields a service ratio
ρµ = µa/µs = 100 · 0.009 = 0.9. We present an empirical power-law fit provided in
Eq. (B.263) (dashed curve), and the M/M/1 theoretical geometric distribution from Eq. (13.4)
(dotted curve). The simulated queue-length histogram closely follows the power-law decreas-
ing form with the same fractal exponent, rather than the exponentially decreasing form of the
M/M/1 distribution.

Prob. 13.6.1Since we increase the length of the simulation by a factor of 100 over
that used in Chapter 12, we increase the fractal Gaussian process array sizeM by a
factor of27 = 128, the closest multiple of 2 to 100. Again, to ensure stationarity we
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prepend an additional 1% of the total simulation, the results of which we then discard
before compiling the queue-length histogram.

Figure B.16 displays the estimated queue-length histogram obtained by using this
fractal-Gaussian-process-driven Poisson-process simulation for the arrival process,
coupled with exponential service times and a single server: the FGPDP/M/1 queue
(solid curve). We also present a power-law fit (dashed curve)

pQ(n) = c nα−2, (B.263)

with c chosen to yield a counting distribution that sums to unity (dashed curve), andα
chosen to coincide with the design valueα = 0.8. The form of the exponent derives
from asymptotic bounds on the queue (Likhanov, 2000). The distribution presented
in Eq. (B.263) is known as the zeta distribution (see Sec. 2.7.1).

We also present the theoretical M/M/1 result set forth in Eq. (13.4) (dotted curve).
The simulated queue-length histogram behaves as a decaying power-law function
rather than as a decaying exponential function. The arrival process evidently imparts
its fractal character to the queueing process, yielding the power-law behavior of the
FGPDP/M/1 queue-length distribution (straight line on a doubly logarithmic plot).

M/M/1 THEORYSIMULATIONFGPDP/M/1 QUEUE WITH �� = 0:5

QUEUE LENGTH nQUEUE-LEN
GTHHISTOG
RAMbp Q(n)
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Fig. B.17 Simulated queue-length histogrampQ(n) for the FGPDP/M/1 queue (solid curve).
Arrivals at the queue are described by a fractal-Gaussian-process-driven Poisson process (FG-
PDP) simulated using the following parameters:E[µ] = 100, durationL = 106, fractal
exponentα = 0.8, onset frequencyfS = 0.2, and fractal-Gaussian-process array size
M = 224. Decreasing the expected service time to0.005 reduces the service ratio to
ρµ = µa/µs = 100 · 0.005 = 0.5. The M/M/1 theoretical geometric distribution from
Eq. (13.4) appears as well (dashed curve). The simulated queue-length histogram follows the
exponentially decreasing form of the M/M/1 distribution reasonably well.
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Prob. 13.6.2 Reducing the mean service time from 0.009 to 0.005 serves to reduce
the service ratioρµ and to greatly diminish the queue length. With the average service
rate nearly doubled, even large clusters of arrivals pass through the server without
significantly burdening the queue. Figure B.17 presents the simulated FGPDP/M/1
queue-length histogram (solid curve), along with the theoretical M/M/1 queue-length
distribution set forth in Eq. (13.4) (dashed curve). Though not perfect, the M/M/1
result provides a far superior fit than does a power-law form, which would exhibit
significant curvature on this plot (not shown).

Prob. 13.7 Since the fractal-based point process used in Prob. 13.6 has a Poisson
kernel and the rate process has a standard deviation smaller than the mean (Cµ < 1),
the probability density associated with the resulting interevent intervals does not de-
part greatly from an exponential form [see Eq. (4.33)]. Hence, shuffling the intervals
results in a simulated renewal point process with an estimated interevent-interval den-
sity close to an exponential form. This corresponds to a homogeneous Poisson point
process. We therefore expect that the SHUFFLED-FGPDP/M/1 traffic process will
lead to results similar to those obtained for the M/M/1 queue discussed in Prob. 13.5.

M/M/1 THEORYSIMULATIONSHUFFLED-FGPDP/M/1 QUEUE WITH �� = 0:9
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Fig. B.18 Simulated queue-length histogrampQ(n) for the FGPDP/M/1 queue, after shuf-
fling (solid curve). Arrivals at the queue are described by a shuffled version of a fractal-
Gaussian-process-driven Poisson process (FGPDP) simulated using the following parameters:
E[µ] = 100, durationL = 106, fractal exponentα = 0.8, onset frequencyfS = 0.2, and
fractal-Gaussian-process array sizeM = 224. The service ratio wasρµ = 0.9. The M/M/1
theoretical geometric distribution (using the theoretical arrival rate) of Eq. (13.4) also appears
(dashed curve). The simulated queue-length histogram closely follows the exponentially de-
creasing form of the M/M/1 distribution, rather than the power-law decreasing form followed
by the unshuffled results (see Fig. B.16).
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Figure B.18 displays the queue-length histogram resulting from the simulation
(solid curve), along with a plot of the theoretical geometric M/M/1 result (dashed
curve), as provided in Eq. (13.4). As before, we discard an added initial 1% before
analyzing the queue-length statistics. The M/M/1 theoretical result fits the simulation
reasonably well. The modulating effect of the fractal Gaussian process influences the
ultimate mean value of the point process, so that we gain improved agreement by
using the measured arrival rate (100.587) in Eq. (13.4), rather than the expected value
µa = 100 (not shown). Still better agreement would obtain from incorporating the
deviation of the interevent-interval density from an exponential form.

Prob. 13.8 Figure B.19 displays the estimated queue-length histogram obtained by
using a rectangular fractal-shot-noise-driven Poisson simulation for the arrival pro-
cess, coupled with exponential service times and a single server (solid curve): this
appears as the RFSNDP/M/1 queue. We also show the power-law form of Eq. (B.263)
(dashed curve) using the design valueα = 0.8, and the theoretical M/M/1 queue re-

M/M/1 THEORYPARETO FITSIMULATIONRFSNDP/M/1 QUEUE WITH �� = 0:9
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Fig. B.19 Simulated queue-length histogrampQ(n) for the RFSNDP/M/1 queue (solid
curve). A rectangular fractal-shot-noise-driven Poisson process (RFSNDP) describes arrivals
at the queue; the impulse-response-function durationB obeys a decaying power-law distribu-
tion∼ B−1.2. The service ratioρµ = µa/µs = 100 ·0.009 = 0.9. We also shown the simple
power-law form provided in Eq. (B.263) (dashed curve), and the M/M/1 theoretical geometric
distribution of Eq. (13.4) (dotted curve). The simulated queue-length histogram closely follows
that of the FGPDP/M/1 queue displayed in Fig. B.16. A simple power-law decreasing fit with
exponentα − 2 = −1.2 thus describes both the FSNDP/M/1 and FGPDP/M/1 queues well
for a broad range of queue lengths, while the exponentially decreasing M/M/1 queue-length
distribution does not.
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sult from Eq. (13.4) (dotted curve). The simulation follows a simple power law with
exponentα− 2 = −1.2 over a large range of queue lengths.

As expected, the outcome resembles that obtained for the FGPDP/M/1 queue (see
Fig. B.16), where the arrival process at the queue is a fractal-Gaussian-process-driven
Poisson process.

Prob. 13.9 Figure B.20 shows the estimated queue-length histogram obtained by
using a modulated fractal-Gaussian-process-driven Poisson simulation for the arrival
process, coupled with exponential service times and a single server (solid curve); we
denote this the MODULATED-FGPDP/M/1 queue. The modulation is sinusoidal
with unity modulation depth. We also show the result for the original (unmodulated)
fractal-Gaussian-process-driven Poisson simulation (dashed curve).

In comparison with the original, the modulated version lies below it at small
queue lengths, and above it at large queue lengths. The depression and bump in the
modulated curve resemble the depression and bump in the sinusoidally modulated

ORIGINALMODULATEDMODULATED-FGPDP/M/1 QUEUE WITH �� = 0:9
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Fig. B.20 Simulated queue-length histogrampQ(n) for the MODULATED-FGPDP/M/1
queue (solid curve). We begin with an unmodulated simulation of the fractal-Gaussian-process-
driven Poisson process (FGPDP). This process appears in connection with Prob. 13.6 and relies
on the following parameters:E[µ] = 100, durationL = 106, fractal exponentα = 0.8, onset
frequencyfS = 0.2, and fractal-Gaussian-process array sizeM = 224. The service ratio for
both Prob. 13.6 and the problem at hand isρµ = µa/µs = 100 · 0.009 = 0.9. To generate the
modulated curve, we warped the time axis in a suitable manner (see text) to achieve sinusoidal
modulation withµ0/ω0 À 1, a = 1, and2π/ω0 = 1 min [see Eq. (13.16)] and used this
as the arrival process. We present a queue-length histogram for the FGPDP/M/1 queue as the
dashed curve. Roughly speaking, the solid curve follows the power-law decaying trend of the
dashed curve within an order of magnitude.
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Poisson-process counting distribution; this result appears in both theory (Diament &
Teich, 1970b, Fig. 7) and experiment (Teich & Vannucci, 1978, Fig. 1). These features
carry through from the driving rate process, which heavily favors the peaks and troughs
of the sinusoid at the expense of the mean. As in the absence of modulation, the arrival
process imparts its fractal nature to the queue length.

The queue-length histogram roughly follows the power-law decaying trend of the
unmodulated simulation and, in fact, the two curves lie within an order of magnitude of
each other at all values of the queue length. The power-law form therefore provides
a far closer approximation to modulated simulation than does the M/M/1 queue,
although the modulation destroys the precise power-law behavior seen in the original.

Prob. 13.10.1To summarize, we have

L ≥ 10 TA4

TA4 ≥ 103 TA3

TA3 ≥ TA2

TA2 ≥ 103 TA1

TA1 = 10 E[τ ],

(B.264)

which, taken together, provideL ≥ 108 E[τ ]. Since the expected number of events
E[N(L)] = L/E[τ ], we haveE[N(L)]/E[τ ] ≥ 108, so that the average simulation
must contain at least108 events.

Prob. 13.10.2 First, suppose we assume equalities in Eq. (B.264). ThenTA3 =
TA2. WhenT equals this transition time, the contribution of theα1 term becomes
(TA2/TA1)α1 . For theα2 term to dominate forT > TA3 = TA2, it must achieve the
same value at that same time; thus it becomes(TA2/TA1)α1 × (T/TA2)α2 . Recall
again that we have setTA3 = TA2. The resulting normalized Haar-wavelet variance
then becomes

A(T ) = 1 + (T/TA1)α1 + (TA2/TA1)α1(T/TA2)α2 . (B.265)

Least-squares fitting programs applied directly to doubly logarithmic curves yield
results that proportionally follow large values of the ordinate far more closely than
small ones. However, instead of employing Eq. (B.265) we can instead perform a
least-squares fit to the modified equation

f(x) = log
{

1 +
[
exp(x)/TA1

]α1 + (TA2/TA1)α1
[
exp(x)/TA2

]α2
}

. (B.266)

To maintain equal weighting over all decades, we choose geometric spacing forT ,
which is equivalent to linear spacing forx.

Using this method, we obtain monofractal parametersα
.= 0.615716 andTA

.=
24.7731. Figure B.21 displays the bifractal curve and the monofractal fit, which
follows it fairly well.

Were real teletraffic to follow the bifractal curve in Fig. B.21, a cursory analysis
might lead us to conclude that the data follows a monofractal form. Indeed, Occam’s
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MONOFRACTAL FITBIFRACTALBIFRACTAL WITH WIDE RANGE
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Fig. B.21 Bifractal form of the normalized Haar-wavelet variance provided in Eq. (B.265)
(solid curve), and the monofractal logarithmic least-squares fit obtained via Eq. (B.266) (dashed
curve), for the wide scaling rangeTA2/TA1 = TA4/TA3 = 103.

MONOFRACTAL FITBIFRACTALBIFRACTAL WITH NARROW RANGE

COUNTING TIME T
NHWVA(T) 100010010
10

Fig. B.22 Bifractal form of the normalized Haar-wavelet variance provided in Eq. (B.265)
(solid curve), and the monofractal logarithmic least-squares fit obtained via Eq. (B.266) (dashed
curve), for the narrow scaling rangeTA2/TA1 = TA4/TA3 = 10.
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razor would encourage us to draw this conclusion. However, Fig. B.21 illustrates that a
significant difference exists between the two results, in the sense of Eq. (12.25), which
favors the bifractal interpretation. Still, real data almost never follow precise forms,
be they bifractal, monofractal, or otherwise; this makes a monofractal interpretation
at least plausible, despite the relatively wide scaling rangesTA4/TA3 andTA2/TA1.

For the narrow scaling rangeTA2/TA1 = TA4/TA3 = 10, the interpretation be-
comes quite murky. Here we obtainα

.= 0.606821 andTA
.= 6.61332; interestingly,

the monofractal cutoff timeTA lies below bothTA1 andTA3. Figure B.22 displays
the results. Deducing the presence of two scaling regions from data with these char-
acteristics would prove nearly impossible.
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